About the Project

poristic polygon constructions of Poncelet

AdvancedHelp

(0.002 seconds)

11—20 of 67 matching pages

11: 13.27 Mathematical Applications
Vilenkin (1968, Chapter 8) constructs irreducible representations of this group, in which the diagonal matrices correspond to operators of multiplication by an exponential function. …
12: Mourad E. H. Ismail
Ismail serves on several editorial boards including the Cambridge University Press book series Encyclopedia of Mathematics and its Applications, and on the editorial boards of 9 journals including Proceedings of the American Mathematical Society (Integrable Systems and Special Functions Editor); Constructive Approximation; Journal of Approximation Theory; and Integral Transforms and Special Functions. …
13: Daniel W. Lozier
His research interests have centered on numerical analysis, special functions, computer arithmetic, and mathematical software construction and testing. …
14: 18.40 Methods of Computation
In what follows we consider only the simple, illustrative, case that μ ( x ) is continuously differentiable so that d μ ( x ) = w ( x ) d x , with w ( x ) real, positive, and continuous on a real interval [ a , b ] . The strategy will be to: 1) use the moments to determine the recursion coefficients α n , β n of equations (18.2.11_5) and (18.2.11_8); then, 2) to construct the quadrature abscissas x i and weights (or Christoffel numbers) w i from the J-matrix of §3.5(vi), equations (3.5.31) and(3.5.32). These quadrature weights and abscissas will then allow construction of a convergent sequence of approximations to w ( x ) , as will be considered in the following paragraphs. … A simple set of choices is spelled out in Gordon (1968) which gives a numerically stable algorithm for direct computation of the recursion coefficients in terms of the moments, followed by construction of the J-matrix and quadrature weights and abscissas, and we will follow this approach: Let N be a positive integer and define …
Histogram Approach
In what follows this is accomplished in two ways: i) via the Lagrange interpolation of §3.3(i) ; and ii) by constructing a pointwise continued fraction, or PWCF, as follows: …
15: 31.8 Solutions via Quadratures
the Hermite–Darboux method (see Whittaker and Watson (1927, pp. 570–572)) can be applied to construct solutions of (31.2.1) expressed in quadratures, as follows. … The solutions in this section are finite-term Liouvillean solutions which can be constructed via Kovacic’s algorithm; see §31.14(ii).
16: 7.20 Mathematical Applications
The complementary error function also plays a ubiquitous role in constructing exponentially-improved asymptotic expansions and providing a smooth interpretation of the Stokes phenomenon; see §§2.11(iii) and 2.11(iv). …
17: 25.3 Graphics
18: Philip J. Davis
After receiving an overview of the project and watching a short demo that included a few preliminary colorful, but static, 3D graphs constructed for the first Chapter, “Airy and Related Functions”, written by Olver, Davis expressed the hope that designing a web-based resource would allow the team to incorporate interesting computer graphics, such as function surfaces that could be rotated and examined. …
19: 1.9 Calculus of a Complex Variable
A domain D , say, is an open set in that is connected, that is, any two points can be joined by a polygonal arc (a finite chain of straight-line segments) lying in the set. …
20: 20.11 Generalizations and Analogs
Similar identities can be constructed for F 1 2 ( 1 3 , 2 3 ; 1 ; k 2 ) , F 1 2 ( 1 4 , 3 4 ; 1 ; k 2 ) , and F 1 2 ( 1 6 , 5 6 ; 1 ; k 2 ) . …For applications to rapidly convergent expansions for π see Chudnovsky and Chudnovsky (1988), and for applications in the construction of elliptic-hypergeometric series see Rosengren (2004). …