About the Project

polynomial%20cases

AdvancedHelp

(0.003 seconds)

1—10 of 11 matching pages

1: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 2: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1966a) Error bounds for asymptotic solutions of differential equations. I. The distinct eigenvalue case. J. Res. Nat. Bur. Standards Sect. B 70B, pp. 167–186.
  • F. Stenger (1966b) Error bounds for asymptotic solutions of differential equations. II. The general case. J. Res. Nat. Bur. Standards Sect. B 70B, pp. 187–210.
  • 3: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • P. Nevai (1986) Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48 (1), pp. 3–167.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • M. Noumi and J. V. Stokman (2004) Askey-Wilson polynomials: an affine Hecke algebra approach. In Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, pp. 111–144.
  • 4: 18.5 Explicit Representations
    §18.5 Explicit Representations
    For this reason, and also in the interest of simplicity, in the case of the Jacobi polynomials P n ( α , β ) ( x ) we assume throughout this chapter that α > 1 and β > 1 , unless stated otherwise. Similarly in the cases of the ultraspherical polynomials C n ( λ ) ( x ) and the Laguerre polynomials L n ( α ) ( x ) we assume that λ > 1 2 , λ 0 , and α > 1 , unless stated otherwise. …
    5: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • H. R. McFarland and D. St. P. Richards (2001) Exact misclassification probabilities for plug-in normal quadratic discriminant functions. I. The equal-means case. J. Multivariate Anal. 77 (1), pp. 21–53.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 6: 19.36 Methods of Computation
    Polynomials of still higher degree can be obtained from (19.19.5) and (19.19.7). … The computation is slowest for complete cases. … Complete cases of Legendre’s integrals and symmetric integrals can be computed with quadratic convergence by the AGM method (including Bartky transformations), using the equations in §19.8(i) and §19.22(ii), respectively. … Also, see Todd (1975) for a special case of K ( k ) . For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …
    7: 32.8 Rational Solutions
    The rational solutions when the parameters satisfy (32.8.22) are special cases of §32.10(iv). … Cases (a) and (b) are special cases of §32.10(v). … For the case δ = 0 see Airault (1979) and Lukaševič (1968). … In the general case, P VI  has rational solutions if …These are special cases of §32.10(vi). …
    8: 26.9 Integer Partitions: Restricted Number and Part Size
    26.9.4 [ m n ] q = j = 1 n 1 q m n + j 1 q j , n 0 ,
    is the Gaussian polynomial (or q -binomial coefficient); see also §§17.2(i)17.2(ii). In the present chapter m n 0 in all cases. … equivalently, partitions into at most k parts either have exactly k parts, in which case we can subtract one from each part, or they have strictly fewer than k parts. …
    9: 5.11 Asymptotic Expansions
    Wrench (1968) gives exact values of g k up to g 20 . … where h ( ) is fixed, and B k ( h ) is the Bernoulli polynomial defined in §24.2(i). … In the case K = 1 the factor 1 + ζ ( K ) is replaced with 4. … In terms of generalized Bernoulli polynomials B n ( ) ( x ) 24.16(i)), we have for k = 0 , 1 , , … For the error term in (5.11.19) in the case z = x ( > 0 ) and c = 1 , see Olver (1995). …
    10: 25.11 Hurwitz Zeta Function
    The Riemann zeta function is a special case: …
    See accompanying text
    Figure 25.11.1: Hurwitz zeta function ζ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
    For B ~ n ( x ) see §24.2(iii). …
    25.11.21 ζ ( 1 2 n , h k ) = ( ψ ( 2 n ) ln ( 2 π k ) ) B 2 n ( h / k ) 2 n ( ψ ( 2 n ) ln ( 2 π ) ) B 2 n 2 n k 2 n + ( 1 ) n + 1 π ( 2 π k ) 2 n r = 1 k 1 sin ( 2 π r h k ) ψ ( 2 n 1 ) ( r k ) + ( 1 ) n + 1 2 ( 2 n 1 ) ! ( 2 π k ) 2 n r = 1 k 1 cos ( 2 π r h k ) ζ ( 2 n , r k ) + ζ ( 1 2 n ) k 2 n ,
    For the more general case ζ ( m , a ) , m = 1 , 2 , , see Elizalde (1986). …