# polar

(0.002 seconds)

## 10 matching pages

##### 1: 1.5 Calculus of Two or More Variables
###### Polar Coordinates
1.5.13 $\nabla^{2}f=\frac{{\partial}^{2}f}{{\partial x}^{2}}+\frac{{\partial}^{2}f}{{% \partial y}^{2}}=\frac{{\partial}^{2}f}{{\partial r}^{2}}+\frac{1}{r}\frac{% \partial f}{\partial r}+\frac{1}{r^{2}}\frac{{\partial}^{2}f}{{\partial\phi}^{% 2}}.$
###### Spherical Coordinates
1.5.39 $\frac{\partial(x,y)}{\partial(r,\phi)}=r\quad\text{(polar coordinates)}.$
##### 2: 9.16 Physical Applications
The use of Airy function and related uniform asymptotic techniques to calculate amplitudes of polarized rainbows can be found in Nussenzveig (1992) and Adam (2002). …
##### 3: 36.13 Kelvin’s Ship-Wave Pattern
In a reference frame where the ship is at rest we use polar coordinates $r$ and $\phi$ with $\phi=0$ in the direction of the velocity of the water relative to the ship. …
##### 4: 22.18 Mathematical Applications
In polar coordinates, $x=r\cos\phi$, $y=r\sin\phi$, the lemniscate is given by $r^{2}=\cos\left(2\phi\right)$, $0\leq\phi\leq 2\pi$. …
##### 5: 36.7 Zeros
There are also three sets of zero lines in the plane $z=0$ related by $2\pi/3$ rotation; these are zeros of (36.2.20), whose asymptotic form in polar coordinates $(x=r\cos\theta,\;y=r\sin\theta)$ is given by …
##### 6: 1.9 Calculus of a Complex Variable
###### Polar Representation
or in polar form (1.9.3) $u$ and $v$ satisfy …
##### 7: 18.39 Applications in the Physical Sciences
By (1.5.17) the first term in (18.39.21), which is the quantum kinetic energy operator $T_{e}$, can be written in spherical coordinates $r,\theta,\phi$ as …
##### 8: Bibliography S
• L. Shen (1981) The elliptical microstrip antenna with circular polarization. IEEE Trans. Antennas and Propagation 29 (1), pp. 90–94.
• ##### 9: 1.15 Summability Methods
$A(r,\theta)$ is a harmonic function in polar coordinates (1.9.27), and …
##### 10: 3.5 Quadrature
The steepest descent path is given by $\Im\left(t-2\sqrt{t}\right)=0$, or in polar coordinates $t=re^{i\theta}$ we have $r={\sec}^{2}\left(\frac{1}{2}\theta\right)$. …