pochhammer

(0.000 seconds)

1—10 of 132 matching pages

1: 17.14 Constant Term Identities
17.14.1 $\frac{\left(q;q\right)_{a_{1}+a_{2}+\cdots+a_{n}}}{\left(q;q\right)_{a_{1}}% \left(q;q\right)_{a_{2}}\cdots\left(q;q\right)_{a_{n}}}=\mbox{ coeff. of }x_{1% }^{0}x_{2}^{0}\cdots x_{n}^{0}\mbox{ in }\prod_{1\leq j
17.14.2 $\sum_{n=0}^{\infty}\frac{q^{n(n+1)}}{\left(q^{2};q^{2}\right)_{n}\left(-q;q^{2% }\right)_{n+1}}=\mbox{ coeff. of }z^{0}\mbox{ in }\frac{\left(-zq;q^{2}\right)% _{\infty}\left(-z^{-1}q;q^{2}\right)_{\infty}\left(q^{2};q^{2}\right)_{\infty}% }{\left(z^{-1}q^{2};q^{2}\right)_{\infty}\left(-q;q^{2}\right)_{\infty}\left(z% ^{-1}q;q^{2}\right)_{\infty}}=\frac{1}{\left(-q;q^{2}\right)_{\infty}}\mbox{ % coeff. of }z^{0}\mbox{ in }\frac{\left(-zq;q^{2}\right)_{\infty}\left(-z^{-1}q% ;q^{2}\right)_{\infty}\left(q^{2};q^{2}\right)_{\infty}}{\left(z^{-1}q;q\right% )_{\infty}}=\frac{H(q)}{\left(-q;q^{2}\right)_{\infty}},$
17.14.3 $\sum_{n=0}^{\infty}\frac{q^{n(n+1)}}{\left(q^{2};q^{2}\right)_{n}\left(-q;q^{2% }\right)_{n+1}}=\mbox{ coeff. of }z^{0}\mbox{ in }\frac{\left(-zq;q^{2}\right)% _{\infty}\left(-z^{-1}q;q^{2}\right)_{\infty}\left(q^{2};q^{2}\right)_{\infty}% }{\left(z^{-1};q^{2}\right)_{\infty}\left(-q;q^{2}\right)_{\infty}\left(z^{-1}% q;q^{2}\right)_{\infty}}=\frac{1}{\left(-q;q^{2}\right)_{\infty}}\mbox{ coeff.% of }z^{0}\mbox{ in }\frac{\left(-zq;q^{2}\right)_{\infty}\left(-z^{-1}q;q^{2}% \right)_{\infty}\left(q^{2};q^{2}\right)_{\infty}}{\left(z^{-1};q\right)_{% \infty}}=\frac{G(q)}{\left(-q;q^{2}\right)_{\infty}},$
17.14.4 $\sum_{n=0}^{\infty}\frac{q^{n^{2}}}{\left(q^{2};q^{2}\right)_{n}\left(q;q^{2}% \right)_{n}}=\mbox{ coeff. of }z^{0}\mbox{ in }\frac{\left(-zq;q^{2}\right)_{% \infty}\left(-z^{-1}q;q^{2}\right)_{\infty}\left(q^{2};q^{2}\right)_{\infty}}{% \left(-z^{-1};q^{2}\right)_{\infty}\left(q;q^{2}\right)_{\infty}\left(z^{-1};q% ^{2}\right)_{\infty}}=\frac{1}{\left(q;q^{2}\right)_{\infty}}\mbox{ coeff. of % }z^{0}\mbox{ in }\frac{\left(-zq;q^{2}\right)_{\infty}\left(-z^{-1}q;q^{2}% \right)_{\infty}\left(q^{2};q^{2}\right)_{\infty}}{\left(z^{-2};q^{4}\right)_{% \infty}}=\frac{G(q^{4})}{\left(q;q^{2}\right)_{\infty}},$
17.14.5 $\sum_{n=0}^{\infty}\frac{q^{n^{2}+2n}}{\left(q^{2};q^{2}\right)_{n}\left(q;q^{% 2}\right)_{n+1}}=\mbox{ coeff. of }z^{0}\mbox{ in }\frac{\left(-zq;q^{2}\right% )_{\infty}\left(-z^{-1}q;q^{2}\right)_{\infty}\left(q^{2};q^{2}\right)_{\infty% }}{\left(-q^{2}z^{-1};q^{2}\right)_{\infty}\left(q;q^{2}\right)_{\infty}\left(% z^{-1}q^{2};q^{2}\right)_{\infty}}=\frac{1}{\left(q;q^{2}\right)_{\infty}}% \mbox{ coeff. of }z^{0}\mbox{ in }\frac{\left(-zq;q^{2}\right)_{\infty}\left(-% z^{-1}q;q^{2}\right)_{\infty}\left(q^{2};q^{2}\right)_{\infty}}{\left(q^{4}z^{% -2};q^{4}\right)_{\infty}}=\frac{H(q^{4})}{\left(q;q^{2}\right)_{\infty}}.$
2: 5.2 Definitions
§5.2(iii) Pochhammer’s Symbol
${\left(a\right)_{0}}=1,$
${\left(a\right)_{2n}}=2^{2n}{\left(\frac{a}{2}\right)_{n}}{\left(\frac{a+1}{2}% \right)_{n}},$
${\left(a\right)_{2n+1}}=2^{2n+1}{\left(\frac{a}{2}\right)_{n+1}}{\left(\frac{a% +1}{2}\right)_{n}}.$
Pochhammer symbols (rising factorials) ${\left(x\right)_{n}}=x(x+1)\cdots(x+n-1)$ and falling factorials $(-1)^{n}{\left(-x\right)_{n}}=x(x-1)\cdots(x-n+1)$ can be expressed in terms of each other via …
3: 17.13 Integrals
17.13.1 $\int_{-c}^{d}\frac{\left(-qx/c;q\right)_{\infty}\left(qx/d;q\right)_{\infty}}{% \left(-ax/c;q\right)_{\infty}\left(bx/d;q\right)_{\infty}}\,{\mathrm{d}}_{q}x=% \frac{(1-q)\left(q;q\right)_{\infty}\left(ab;q\right)_{\infty}cd\left(-c/d;q% \right)_{\infty}\left(-d/c;q\right)_{\infty}}{\left(a;q\right)_{\infty}\left(b% ;q\right)_{\infty}(c+d)\left(-bc/d;q\right)_{\infty}\left(-ad/c;q\right)_{% \infty}},$
17.13.2 $\int_{-c}^{d}\frac{\left(-qx/c;q\right)_{\infty}\left(qx/d;q\right)_{\infty}}{% \left(-xq^{\alpha}/c;q\right)_{\infty}\left(xq^{\beta}/d;q\right)_{\infty}}\,{% \mathrm{d}}_{q}x=\frac{\Gamma_{q}\left(\alpha\right)\Gamma_{q}\left(\beta% \right)}{\Gamma_{q}\left(\alpha+\beta\right)}\frac{cd}{c+d}\frac{\left(-c/d;q% \right)_{\infty}\left(-d/c;q\right)_{\infty}}{\left(-q^{\beta}c/d;q\right)_{% \infty}\left(-q^{\alpha}d/c;q\right)_{\infty}}.$
17.13.3 $\int_{0}^{\infty}t^{\alpha-1}\frac{\left(-tq^{\alpha+\beta};q\right)_{\infty}}% {\left(-t;q\right)_{\infty}}\,\mathrm{d}t=\frac{\Gamma\left(\alpha\right)% \Gamma\left(1-\alpha\right)\Gamma_{q}\left(\beta\right)}{\Gamma_{q}\left(1-% \alpha\right)\Gamma_{q}\left(\alpha+\beta\right)},$
17.13.4 $\int_{0}^{\infty}t^{\alpha-1}\frac{\left(-ctq^{\alpha+\beta};q\right)_{\infty}% }{\left(-ct;q\right)_{\infty}}\,{\mathrm{d}}_{q}t=\frac{\Gamma_{q}\left(\alpha% \right)\Gamma_{q}\left(\beta\right)\left(-cq^{\alpha};q\right)_{\infty}\left(-% q^{1-\alpha}/c;q\right)_{\infty}}{\Gamma_{q}\left(\alpha+\beta\right)\left(-c;% q\right)_{\infty}\left(-q/c;q\right)_{\infty}}.$
4: 16.13 Appell Functions
16.13.1 ${F_{1}}\left(\alpha;\beta,\beta^{\prime};\gamma;x,y\right)=\sum_{m,n=0}^{% \infty}\frac{{\left(\alpha\right)_{m+n}}{\left(\beta\right)_{m}}{\left(\beta^{% \prime}\right)_{n}}}{{\left(\gamma\right)_{m+n}}m!n!}x^{m}y^{n},$ $\max\left(|x|,|y|\right)<1$,
16.13.2 ${F_{2}}\left(\alpha;\beta,\beta^{\prime};\gamma,\gamma^{\prime};x,y\right)=% \sum_{m,n=0}^{\infty}\frac{{\left(\alpha\right)_{m+n}}{\left(\beta\right)_{m}}% {\left(\beta^{\prime}\right)_{n}}}{{\left(\gamma\right)_{m}}{\left(\gamma^{% \prime}\right)_{n}}m!n!}x^{m}y^{n},$ $|x|+|y|<1$,
16.13.3 ${F_{3}}\left(\alpha,\alpha^{\prime};\beta,\beta^{\prime};\gamma;x,y\right)=% \sum_{m,n=0}^{\infty}\frac{{\left(\alpha\right)_{m}}{\left(\alpha^{\prime}% \right)_{n}}{\left(\beta\right)_{m}}{\left(\beta^{\prime}\right)_{n}}}{{\left(% \gamma\right)_{m+n}}m!n!}x^{m}y^{n},$ $\max\left(|x|,|y|\right)<1$,
16.13.4 ${F_{4}}\left(\alpha,\beta;\gamma,\gamma^{\prime};x,y\right)=\sum_{m,n=0}^{% \infty}\frac{{\left(\alpha\right)_{m+n}}{\left(\beta\right)_{m+n}}}{{\left(% \gamma\right)_{m}}{\left(\gamma^{\prime}\right)_{n}}m!n!}x^{m}y^{n},$ $\sqrt{|x|}+\sqrt{|y|}<1$.
5: 17.2 Calculus
For $n=0,1,2,\dots$, … … For properties of the function $\mathit{f}\left(q\right)=q^{\ifrac{-1}{24}}\eta\left(\frac{\ln q}{2\pi\mathrm{% i}}\right)=\left(q;q\right)_{\infty}$ see §27.14. …
17.2.18 $\left(aq^{k};q\right)_{n-k}=\frac{\left(a;q\right)_{n}}{\left(a;q\right)_{k}}.$
17.2.21 $\left(a^{2};q^{2}\right)_{n}=\left(a;q\right)_{n}\left(-a;q\right)_{n},$
6: 17.11 Transformations of $q$-Appell Functions
17.11.1 $\Phi^{(1)}\left(a;b,b^{\prime};c;q;x,y\right)=\frac{\left(a,bx,b^{\prime}y;q% \right)_{\infty}}{\left(c,x,y;q\right)_{\infty}}{{}_{3}\phi_{2}}\left({c/a,x,y% \atop bx,b^{\prime}y};q,a\right),$
17.11.2 $\Phi^{(2)}\left(a;b,b^{\prime};c,c^{\prime};q;x,y\right)=\frac{\left(b,ax;q% \right)_{\infty}}{\left(c,x;q\right)_{\infty}}\sum_{n,r\geqq 0}\frac{\left(a,b% ^{\prime};q\right)_{n}\left(c/b,x;q\right)_{r}b^{r}y^{n}}{\left(q,c^{\prime};q% \right)_{n}\left(q;q\right)_{r}\left(ax;q\right)_{n+r}},$
17.11.3 $\Phi^{(3)}\left(a,a^{\prime};b,b^{\prime};c;q;x,y\right)=\frac{\left(a,bx;q% \right)_{\infty}}{\left(c,x;q\right)_{\infty}}\sum_{n,r\geqq 0}\frac{\left(a^{% \prime},b^{\prime};q\right)_{n}\left(x;q\right)_{r}\left(c/a;q\right)_{n+r}a^{% r}y^{n}}{\left(q,c/a;q\right)_{n}\left(q,bx;q\right)_{r}}.$
17.11.4 $\sum_{m_{1},\dots,m_{n}\geqq 0}\frac{\left(a;q\right)_{m_{1}+m_{2}+\cdots+m_{n% }}\left(b_{1};q\right)_{m_{1}}\left(b_{2};q\right)_{m_{2}}\cdots\left(b_{n};q% \right)_{m_{n}}x_{1}^{m_{1}}x_{2}^{m_{2}}\cdots x_{n}^{m_{n}}}{\left(q;q\right% )_{m_{1}}\left(q;q\right)_{m_{2}}\cdots\left(q;q\right)_{m_{n}}\left(c;q\right% )_{m_{1}+m_{2}+\cdots+m_{n}}}=\frac{\left(a,b_{1}x_{1},b_{2}x_{2},\dots,b_{n}x% _{n};q\right)_{\infty}}{\left(c,x_{1},x_{2},\dots,x_{n};q\right)_{\infty}}{{}_% {n+1}\phi_{n}}\left({c/a,x_{1},x_{2},\dots,x_{n}\atop b_{1}x_{1},b_{2}x_{2},% \dots,b_{n}x_{n}};q,a\right).$
7: 16.1 Special Notation
 $p,q$ nonnegative integers. … ${\left(a_{1}\right)_{k}}{\left(a_{2}\right)_{k}}\cdots{\left(a_{p}\right)_{k}}$. ${\left(b_{1}\right)_{k}}{\left(b_{2}\right)_{k}}\cdots{\left(b_{q}\right)_{k}}$. …
8: 16.9 Zeros
Next, assume that $p=q$ and that the $a_{j}$ and the quotients ${\left(\mathbf{a}\right)_{j}}/{\left(\mathbf{b}\right)_{j}}$ are all real. …
9: 17.9 Further Transformations of ${{}_{r+1}\phi_{r}}$ Functions
17.9.1 ${{}_{2}\phi_{1}}\left({a,b\atop c};q,z\right)=\frac{\left(za;q\right)_{\infty}% }{\left(z;q\right)_{\infty}}{{}_{2}\phi_{2}}\left({a,c/b\atop c,az};q,bz\right),$
17.9.3 ${{}_{2}\phi_{1}}\left({a,b\atop c};q,z\right)=\frac{\left(abz/c;q\right)_{% \infty}}{\left(bz/c;q\right)_{\infty}}{{}_{3}\phi_{2}}\left({a,c/b,0\atop c,cq% /(bz)};q,q\right)+\frac{\left(a,bz,c/b;q\right)_{\infty}}{\left(c,z,c/(bz);q% \right)_{\infty}}{{}_{3}\phi_{2}}\left({z,abz/c,0\atop bz,bzq/c};q,q\right),$
17.9.5 ${{}_{2}\phi_{1}}\left({q^{-n},b\atop c};q,z\right)=\frac{\left(c/b;q\right)_{n% }}{\left(c;q\right)_{n}}{{}_{3}\phi_{2}}\left({q^{-n},b,bzq^{-n}/c\atop bq^{1-% n}/c,0};q,q\right).$
17.9.19 $\sum_{n=0}^{\infty}\frac{\left(a;q^{2}\right)_{n}\left(b;q\right)_{n}}{\left(q% ^{2};q^{2}\right)_{n}\left(c;q\right)_{n}}z^{n}=\frac{\left(b;q\right)_{\infty% }\left(az;q^{2}\right)_{\infty}}{\left(c;q\right)_{\infty}\left(z;q^{2}\right)% _{\infty}}\sum_{n=0}^{\infty}\frac{\left(c/b;q\right)_{2n}\left(z;q^{2}\right)% _{n}b^{2n}}{\left(q;q\right)_{2n}\left(az;q^{2}\right)_{n}}+\frac{\left(b;q% \right)_{\infty}\left(azq;q^{2}\right)_{\infty}}{\left(c;q\right)_{\infty}% \left(zq;q^{2}\right)_{\infty}}\sum_{n=0}^{\infty}\frac{\left(c/b;q\right)_{2n% +1}\left(zq;q^{2}\right)_{n}b^{2n+1}}{\left(q;q\right)_{2n+1}\left(azq;q^{2}% \right)_{n}}.$
17.9.20 $\sum_{n=0}^{\infty}\frac{\left(a;q^{k}\right)_{n}\left(b;q\right)_{kn}z^{n}}{% \left(q^{k};q^{k}\right)_{n}\left(c;q\right)_{kn}}=\frac{\left(b;q\right)_{% \infty}\left(az;q^{k}\right)_{\infty}}{\left(c;q\right)_{\infty}\left(z;q^{k}% \right)_{\infty}}\sum_{n=0}^{\infty}\frac{\left(c/b;q\right)_{n}\left(z;q^{k}% \right)_{n}b^{n}}{\left(q;q\right)_{n}\left(az;q^{k}\right)_{n}},$ $k=1,2,3,\dots$.
10: 17.12 Bailey Pairs
17.12.3 $\beta_{n}=\sum_{j=0}^{n}\frac{\alpha_{j}}{\left(q;q\right)_{n-j}\left(aq;q% \right)_{n+j}}.$
17.12.4 $\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\beta_{n}=\frac{1}{\left(aq;q\right)_{\infty}% }\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\alpha_{n}.$
$\left(\frac{aq}{\rho_{1}},\frac{aq}{\rho_{2}};q\right)_{n}\beta_{n}^{\prime}=% \sum_{j=0}^{n}\left(\rho_{1},\rho_{2};q\right)_{j}\left(\frac{aq}{\rho_{1}\rho% _{2}};q\right)_{n-j}\left(\frac{aq}{\rho_{1}\rho_{2}}\right)^{j}\frac{\beta_{j% }}{\left(q;q\right)_{n-j}}$
$\alpha_{n}=\frac{\left(a;q\right)_{n}(1-aq^{2n})(-1)^{n}q^{n(3n-1)/2}a^{n}}{% \left(q;q\right)_{n}(1-a)},$
$\beta_{n}=\frac{1}{\left(q;q\right)_{n}}.$