About the Project

phase%20principle

AdvancedHelp

(0.003 seconds)

1—10 of 266 matching pages

1: 3.8 Nonlinear Equations
Initial approximations to the zeros can often be found from asymptotic or other approximations to f ( z ) , or by application of the phase principle or Rouché’s theorem; see §1.10(iv). …
3.8.15 p ( x ) = ( x 1 ) ( x 2 ) ( x 20 )
Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
3.8.16 d x d a 19 = 20 19 19 ! = ( 4.30 ) × 10 7 .
2: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. Rudin (1976) Principles of Mathematical Analysis. 3rd edition, McGraw-Hill Book Co., New York.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • 3: 1.10 Functions of a Complex Variable
    Schwarz Reflection Principle
    Phase (or Argument) Principle
    §1.10(v) Maximum-Modulus Principle
    Analytic Functions
    Harmonic Functions
    4: Sidebar 21.SB2: A two-phase solution of the Kadomtsev–Petviashvili equation (21.9.3)
    Sidebar 21.SB2: A two-phase solution of the Kadomtsev–Petviashvili equation (21.9.3)
    A two-phase solution of the Kadomtsev–Petviashvili equation (21.9.3). Such a solution is given in terms of a Riemann theta function with two phases. …
    5: 33.25 Approximations
    §33.25 Approximations
    Cody and Hillstrom (1970) provides rational approximations of the phase shift σ 0 ( η ) = ph Γ ( 1 + i η ) (see (33.2.10)) for the ranges 0 η 2 , 2 η 4 , and 4 η . …
    6: 11.6 Asymptotic Expansions
    11.6.1 𝐊 ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | π δ ,
    11.6.2 𝐌 ν ( z ) 1 π k = 0 ( 1 ) k + 1 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | 1 2 π δ .
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    7: 10.3 Graphics
    §10.3(i) Real Order and Variable
    For the modulus and phase functions M ν ( x ) , θ ν ( x ) , N ν ( x ) , and ϕ ν ( x ) see §10.18. …
    See accompanying text
    Figure 10.3.4: θ 5 ( x ) , ϕ 5 ( x ) , 0 x 15 . Magnify
    In the graphics shown in this subsection, height corresponds to the absolute value of the function and color to the phase. …
    8: 10.75 Tables
  • The main tables in Abramowitz and Stegun (1964, Chapter 9) give J 0 ( x ) to 15D, J 1 ( x ) , J 2 ( x ) , Y 0 ( x ) , Y 1 ( x ) to 10D, Y 2 ( x ) to 8D, x = 0 ( .1 ) 17.5 ; Y n ( x ) ( 2 / π ) J n ( x ) ln x , n = 0 , 1 , x = 0 ( .1 ) 2 , 8D; J n ( x ) , Y n ( x ) , n = 3 ( 1 ) 9 , x = 0 ( .2 ) 20 , 5D or 5S; J n ( x ) , Y n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100 , x = 1 , 2 , 5 , 10 , 50 , 100 , 10S; modulus and phase functions x M n ( x ) , θ n ( x ) x , n = 0 , 1 , 2 , 1 / x = 0 ( .01 ) 0.1 , 8D.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Kerimov and Skorokhodov (1984c) tabulates all zeros of I n 1 2 ( z ) and I n 1 2 ( z ) in the sector 0 ph z 1 2 π for n = 1 ( 1 ) 20 , 9S.

  • Young and Kirk (1964) tabulates ber n x , bei n x , ker n x , kei n x , n = 0 , 1 , x = 0 ( .1 ) 10 , 15D; ber n x , bei n x , ker n x , kei n x , modulus and phase functions M n ( x ) , θ n ( x ) , N n ( x ) , ϕ n ( x ) , n = 0 , 1 , 2 , x = 0 ( .01 ) 2.5 , 8S, and n = 0 ( 1 ) 10 , x = 0 ( .1 ) 10 , 7S. Also included are auxiliary functions to facilitate interpolation of the tables for n = 0 ( 1 ) 10 for small values of x . (Concerning the phase functions see §10.68(iv).)

  • Abramowitz and Stegun (1964, Chapter 9) tabulates ber n x , bei n x , ker n x , kei n x , n = 0 , 1 , x = 0 ( .1 ) 5 , 9–10D; x n ( ker n x + ( ber n x ) ( ln x ) ) , x n ( kei n x + ( bei n x ) ( ln x ) ) , n = 0 , 1 , x = 0 ( .1 ) 1 , 9D; modulus and phase functions M n ( x ) , θ n ( x ) , N n ( x ) , ϕ n ( x ) , n = 0 , 1 , x = 0 ( .2 ) 7 , 6D; x e x / 2 M n ( x ) , θ n ( x ) ( x / 2 ) , x e x / 2 N n ( x ) , ϕ n ( x ) + ( x / 2 ) , n = 0 , 1 , 1 / x = 0 ( .01 ) 0.15 , 5D.

  • 9: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • M. V. Berry and F. J. Wright (1980) Phase-space projection identities for diffraction catastrophes. J. Phys. A 13 (1), pp. 149–160.
  • M. Born and E. Wolf (1999) Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th edition, Cambridge University Press, Cambridge.
  • A. Burgess (1963) The determination of phases and amplitudes of wave functions. Proc. Phys. Soc. 81 (3), pp. 442–452.
  • 10: 9.7 Asymptotic Expansions
    Numerical values of χ ( n ) are given in Table 9.7.1 for n = 1 ( 1 ) 20 to 2D. …
    9.7.6 Ai ( z ) z 1 / 4 e ζ 2 π k = 0 ( 1 ) k v k ζ k , | ph z | π δ ,
    9.7.17 { 1 , | ph z | 1 3 π , min ( | csc ( ph ζ ) | , χ ( n + σ ) + 1 ) , 1 3 π | ph z | 2 3 π , 2 π ( n + σ ) | cos ( ph ζ ) | n + σ + χ ( n + σ ) + 1 , 2 3 π | ph z | < π ,