periodic Euler functions
(0.002 seconds)
1—10 of 20 matching pages
1: 24.2 Definitions and Generating Functions
…
►
§24.2(iii) Periodic Bernoulli and Euler Functions
…2: 24.17 Mathematical Applications
3: 25.13 Periodic Zeta Function
4: 25.16 Mathematical Applications
5: 25.1 Special Notation
…
►(For other notation see Notation for the Special Functions.)
►
►
►The main function treated in this chapter is the Riemann zeta function
.
…
►The main related functions are the Hurwitz zeta function
, the dilogarithm , the polylogarithm (also known as Jonquière’s function
), Lerch’s transcendent , and the Dirichlet -functions
.
nonnegative integers. | |
… | |
periodic Bernoulli function . | |
… |
6: 24.16 Generalizations
…
►In no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); -adic integer order Bernoulli numbers (Adelberg (1996)); -adic -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).
7: 25.11 Hurwitz Zeta Function
8: 25.2 Definition and Expansions
9: 32.10 Special Function Solutions
§32.10 Special Function Solutions
… ►If , then as in §32.2(ii) we may set and . … ►where the fundamental periods and are linearly independent functions satisfying the hypergeometric equation …The solution (32.10.34) is an essentially transcendental function of both constants of integration since with and does not admit an algebraic first integral of the form , with a constant. … ►10: 2.10 Sums and Sequences
…
►