periodic Bernoulli functions
(0.002 seconds)
1—10 of 13 matching pages
1: 24.2 Definitions and Generating Functions
…
►
§24.2(iii) Periodic Bernoulli and Euler Functions
…2: 25.1 Special Notation
3: 25.11 Hurwitz Zeta Function
4: 24.17 Mathematical Applications
5: 25.16 Mathematical Applications
6: 25.2 Definition and Expansions
7: 2.10 Sums and Sequences
…
►As in §24.2, let and denote the th Bernoulli number and polynomial, respectively, and the th Bernoulli periodic function
.
…
►
2.10.1
…
►
2.10.5
…
8: 24.16 Generalizations
…
►In no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); -adic integer order Bernoulli numbers (Adelberg (1996)); -adic -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).
9: Errata
…
►
Equations (25.11.6), (25.11.19), and (25.11.20)
…
Originally all six integrands in these equations were incorrect because their numerators contained the function . The correct function is . The new equations are:
25.11.6
, ,
Reported 2016-05-08 by Clemens Heuberger.
25.11.19
, ,
Reported 2016-06-27 by Gergő Nemes.
25.11.20
, ,
Reported 2016-06-27 by Gergő Nemes.
10: Bibliography B
…
►
Periodic Bernoulli numbers, summation formulas and applications.
In Theory and Application of Special Functions (Proc. Advanced
Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis.,
1975),
pp. 143–189.
…