partition function
(0.001 seconds)
1—10 of 36 matching pages
1: 27.20 Methods of Computation: Other Number-Theoretic Functions
…
►The recursion formulas (27.14.6) and (27.14.7) can be used to calculate the partition function
for .
…To compute a particular value it is better to use the Hardy–Ramanujan–Rademacher series (27.14.9).
…
2: 26.9 Integer Partitions: Restricted Number and Part Size
3: 26.2 Basic Definitions
4: 27.14 Unrestricted Partitions
…
►
§27.14(i) Partition Functions
… ►as a generating function for the function defined in §27.14(i): …with . … ►where is defined to be if . … ►For example, = , and . …5: 26.17 The Twelvefold Way
6: 26.21 Tables
…
►Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients for up to 50 and up to 25; extends Table 26.4.1 to ; tabulates Stirling numbers of the first and second kinds, and , for up to 25 and up to ; tabulates partitions
and partitions into distinct parts for up to 500.
…
7: 27.21 Tables
…
►The partition function
is tabulated in Gupta (1935, 1937), Watson (1937), and Gupta et al. (1958).
…
8: 26.1 Special Notation
…
►
►
…
binomial coefficient. | |
… | |
number of partitions of . | |
number of partitions of into at most parts. | |
… |
9: 5.20 Physical Applications
…
►Then the partition function (with ) is given by
…
►and the partition function is given by
►
5.20.5
…
►
Elementary Particles
… ►Carlitz (1972) describes the partition function of dense hadronic matter in terms of a gamma function. …10: 25.17 Physical Applications
…
►The zeta function arises in the calculation of the partition function of ideal quantum gases (both Bose–Einstein and Fermi–Dirac cases), and it determines the critical gas temperature and density for the Bose–Einstein condensation phase transition in a dilute gas (Lifshitz and Pitaevskiĭ (1980)).
…