About the Project

partial

AdvancedHelp

(0.001 seconds)

11—20 of 95 matching pages

11: 28.32 Mathematical Applications
β–Ί β–Ί
28.32.3 2 V ξ 2 + 2 V η 2 + 1 2 ⁒ c 2 ⁒ k 2 ⁒ ( cosh ⁑ ( 2 ⁒ ξ ) cos ⁑ ( 2 ⁒ η ) ) ⁒ V = 0 .
β–Ί
28.32.4 2 K z 2 2 K ΢ 2 = 2 ⁒ q ⁒ ( cos ⁑ ( 2 ⁒ z ) cos ⁑ ( 2 ⁒ ΢ ) ) ⁒ K .
β–Ί
28.32.5 K ⁑ ( z , ΢ ) ⁒ d u ⁑ ( ΢ ) d ΢ u ⁑ ( ΢ ) ⁒ K ⁑ ( z , ΢ ) ΢
12: 20.13 Physical Applications
β–ΊThe functions ΞΈ j ⁑ ( z | Ο„ ) , j = 1 , 2 , 3 , 4 , provide periodic solutions of the partial differential equation β–Ί
20.13.1 ΞΈ ⁑ ( z | Ο„ ) / Ο„ = ΞΊ ⁒ 2 ΞΈ ⁑ ( z | Ο„ ) / z 2 ,
β–Ί
20.13.2 θ / t = α ⁒ 2 θ / z 2 ,
13: 1.6 Vectors and Vector-Valued Functions
β–Ί
1.6.19 = 𝐒 ⁒ x + 𝐣 ⁒ y + 𝐀 ⁒ z .
β–Ί
1.6.20 grad ⁑ f = f = f x ⁒ 𝐒 + f y ⁒ 𝐣 + f z ⁒ 𝐀 .
β–Ί
1.6.22 curl ⁑ 𝐅 = × π… = | 𝐒 𝐣 𝐀 x y z F 1 F 2 F 3 | = ( F 3 y F 2 z ) ⁒ 𝐒 + ( F 1 z F 3 x ) ⁒ 𝐣 + ( F 2 x F 1 y ) ⁒ 𝐀 .
β–ΊSuppose S is an oriented surface with boundary S which is oriented so that its direction is clockwise relative to the normals of S . … β–Ίwhere g / n = g 𝐧 is the derivative of g normal to the surface outwards from V and 𝐧 is the unit outer normal vector. …
14: 3.4 Differentiation
β–Ί
§3.4(iii) Partial Derivatives
β–Ίβ–ΊThe results in this subsection for the partial derivatives follow from Panow (1955, Table 10). Those for the Laplacian and the biharmonic operator follow from the formulas for the partial derivatives. … β–Ί
15: 19.4 Derivatives and Differential Equations
β–Ί β–Ί
19.4.5 F ⁑ ( Ο• , k ) k = E ⁑ ( Ο• , k ) k 2 ⁒ F ⁑ ( Ο• , k ) k ⁒ k 2 k ⁒ sin ⁑ Ο• ⁒ cos ⁑ Ο• k 2 ⁒ 1 k 2 ⁒ sin 2 ⁑ Ο• ,
β–Ί β–Ί
19.4.7 Ξ  ⁑ ( Ο• , Ξ± 2 , k ) k = k k 2 ⁒ ( k 2 Ξ± 2 ) ⁒ ( E ⁑ ( Ο• , k ) k 2 ⁒ Ξ  ⁑ ( Ο• , Ξ± 2 , k ) k 2 ⁒ sin ⁑ Ο• ⁒ cos ⁑ Ο• 1 k 2 ⁒ sin 2 ⁑ Ο• ) .
β–ΊLet D k = / k . …
16: 30.13 Wave Equation in Prolate Spheroidal Coordinates
β–Ί
30.13.3 h ξ 2 = ( x ξ ) 2 + ( y ξ ) 2 + ( z ξ ) 2 = c 2 ⁒ ( ξ 2 η 2 ) ξ 2 1 ,
β–Ί β–Ί β–Ί
30.13.6 2 = 1 h ΞΎ ⁒ h Ξ· ⁒ h Ο• ⁒ ( ΞΎ ⁑ ( h Ξ· ⁒ h Ο• h ΞΎ ⁒ ΞΎ ) + Ξ· ⁑ ( h ΞΎ ⁒ h Ο• h Ξ· ⁒ Ξ· ) + Ο• ⁑ ( h ΞΎ ⁒ h Ξ· h Ο• ⁒ Ο• ) ) = 1 c 2 ⁒ ( ΞΎ 2 Ξ· 2 ) ⁒ ( ΞΎ ⁑ ( ( ΞΎ 2 1 ) ⁒ ΞΎ ) + Ξ· ⁑ ( ( 1 Ξ· 2 ) ⁒ Ξ· ) + ΞΎ 2 Ξ· 2 ( ΞΎ 2 1 ) ⁒ ( 1 Ξ· 2 ) ⁒ 2 Ο• 2 ) .
17: 31.10 Integral Equations and Representations
β–Ίand the kernel 𝒦 ⁑ ( z , t ) is a solution of the partial differential equation … β–Ί
31.10.4 π’Ÿ z = z ⁒ ( z 1 ) ⁒ ( z a ) ⁒ ( 2 / z 2 ) + ( Ξ³ ⁒ ( z 1 ) ⁒ ( z a ) + Ξ΄ ⁒ z ⁒ ( z a ) + Ο΅ ⁒ z ⁒ ( z 1 ) ) ⁒ ( / z ) + Ξ± ⁒ Ξ² ⁒ z .
β–Ί
31.10.8 sin 2 ⁑ ΞΈ ⁒ ( 2 𝒦 ΞΈ 2 + ( ( 1 2 ⁒ Ξ³ ) ⁒ tan ⁑ ΞΈ + 2 ⁒ ( Ξ΄ + Ο΅ 1 2 ) ⁒ cot ⁑ ΞΈ ) ⁒ 𝒦 ΞΈ 4 ⁒ Ξ± ⁒ Ξ² ⁒ 𝒦 ) + 2 𝒦 Ο• 2 + ( ( 1 2 ⁒ Ξ΄ ) ⁒ cot ⁑ Ο• ( 1 2 ⁒ Ο΅ ) ⁒ tan ⁑ Ο• ) ⁒ 𝒦 Ο• = 0 .
β–Ίand the kernel 𝒦 ⁑ ( z ; s , t ) is a solution of the partial differential equation … β–Ί
31.10.18 2 𝒦 u 2 + 2 𝒦 v 2 + 2 𝒦 w 2 + 2 ⁒ Ξ³ 1 u ⁒ 𝒦 u + 2 ⁒ Ξ΄ 1 v ⁒ 𝒦 v + 2 ⁒ Ο΅ 1 w ⁒ 𝒦 w = 0 .
18: 14.11 Derivatives with Respect to Degree or Order
β–Ί
14.11.1 Ξ½ ⁑ 𝖯 Ξ½ ΞΌ ⁑ ( x ) = Ο€ ⁒ cot ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ 𝖯 Ξ½ ΞΌ ⁑ ( x ) 1 Ο€ ⁒ 𝖠 Ξ½ ΞΌ ⁑ ( x ) ,
β–Ί
14.11.2 Ξ½ ⁑ 𝖰 Ξ½ ΞΌ ⁑ ( x ) = 1 2 ⁒ Ο€ 2 ⁒ 𝖯 Ξ½ ΞΌ ⁑ ( x ) + Ο€ ⁒ sin ⁑ ( ΞΌ ⁒ Ο€ ) sin ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ sin ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖰 Ξ½ ΞΌ ⁑ ( x ) 1 2 ⁒ cot ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖠 Ξ½ ΞΌ ⁑ ( x ) + 1 2 ⁒ csc ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖠 Ξ½ ΞΌ ⁑ ( x ) ,
β–Ί β–Ί
19: 36.12 Uniform Approximation of Integrals
β–ΊAlso, f is real analytic, and K + 2 f / u K + 2 > 0 for all 𝐲 such that all K + 1 critical points coincide. If K + 2 f / u K + 2 < 0 , then we may evaluate the complex conjugate of I for real values of 𝐲 and g , and obtain I by conjugation and analytic continuation. … β–Ί
36.12.2 u ⁑ f ⁑ ( u j ⁑ ( 𝐲 ) ; 𝐲 ) = 0 .
β–Ί
36.12.10 G n ⁑ ( 𝐲 ) = g ⁑ ( t n ⁑ ( 𝐲 ) , 𝐲 ) ⁒ 2 Φ K ⁑ ( t n ⁑ ( 𝐱 ⁑ ( 𝐲 ) ) ; 𝐱 ⁑ ( 𝐲 ) ) / t 2 2 f ⁑ ( u n ⁑ ( 𝐲 ) ) / u 2 .
β–Ί
f ± ′′ = 2 u 2 ⁑ f ⁑ ( u ± ⁑ ( y ) , y ) ,
20: 32.4 Isomonodromy Problems
β–Ί
𝚿 Ξ» = 𝐀 ⁑ ( z , Ξ» ) ⁒ 𝚿 ,
β–Ί
𝚿 z = 𝐁 ⁑ ( z , λ ) ⁒ 𝚿 ,
β–Ί
32.4.2 2 𝚿 z ⁒ λ = 2 𝚿 λ ⁒ z ,
β–Ί
32.4.3 𝐀 z 𝐁 Ξ» + 𝐀 ⁒ 𝐁 𝐁 ⁒ 𝐀 = 0 .