About the Project

parametrization via Jacobian elliptic functions

AdvancedHelp

(0.004 seconds)

11—20 of 963 matching pages

11: 5.15 Polygamma Functions
§5.15 Polygamma Functions
The functions ψ ( n ) ( z ) , n = 1 , 2 , , are called the polygamma functions. In particular, ψ ( z ) is the trigamma function; ψ ′′ , ψ ( 3 ) , ψ ( 4 ) are the tetra-, penta-, and hexagamma functions respectively. Most properties of these functions follow straightforwardly by differentiation of properties of the psi function. … For B 2 k see §24.2(i). …
12: 9.12 Scorer Functions
§9.12 Scorer Functions
where …
§9.12(ii) Graphs
Functions and Derivatives
13: 14.19 Toroidal (or Ring) Functions
§14.19 Toroidal (or Ring) Functions
§14.19(i) Introduction
§14.19(ii) Hypergeometric Representations
§14.19(iv) Sums
§14.19(v) Whipple’s Formula for Toroidal Functions
14: 11.9 Lommel Functions
§11.9 Lommel Functions
Reflection Formulas
§11.9(ii) Expansions in Series of Bessel Functions
15: 20.2 Definitions and Periodic Properties
§20.2(i) Fourier Series
§20.2(ii) Periodicity and Quasi-Periodicity
The theta functions are quasi-periodic on the lattice: …
§20.2(iii) Translation of the Argument by Half-Periods
§20.2(iv) z -Zeros
16: 16.13 Appell Functions
§16.13 Appell Functions
The following four functions of two real or complex variables x and y cannot be expressed as a product of two F 1 2 functions, in general, but they satisfy partial differential equations that resemble the hypergeometric differential equation (15.10.1):
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.4 F 4 ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m + n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 .
17: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss series … … On the circle of convergence, | z | = 1 , the Gauss series: …
§15.2(ii) Analytic Properties
18: 22.16 Related Functions
§22.16(i) Jacobi’s Amplitude ( am ) Function
Relation to Elliptic Integrals
§22.16(ii) Jacobi’s Epsilon Function
See Figure 22.16.2. …
§22.16(iii) Jacobi’s Zeta Function
19: 10.1 Special Notation
(For other notation see Notation for the Special Functions.) … For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. For the other functions when the order ν is replaced by n , it can be any integer. For the Kelvin functions the order ν is always assumed to be real. … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
20: 4.2 Definitions
§4.2(iii) The Exponential Function
§4.2(iv) Powers
Powers with General Bases