About the Project

other%20branches

AdvancedHelp

(0.002 seconds)

8 matching pages

1: 25.12 Polylogarithms
Other notations and names for Li 2 ( z ) include S 2 ( z ) (Kölbig et al. (1970)), Spence function Sp ( z ) (’t Hooft and Veltman (1979)), and L 2 ( z ) (Maximon (2003)). … The remainder of the equations in this subsection apply to principal branches. … For other values of z , Li s ( z ) is defined by analytic continuation. … Further properties include …and …
2: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …
27.2.3 π ( x ) x ln x .
27.2.4 p n n ln n .
Other examples of number-theoretic functions treated in this chapter are as follows. …
27.2.14 Λ ( n ) = ln p , n = p a ,
3: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Zhang and Jin (1996, p. 322) tabulates ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , x = 0 ( 1 ) 20 , 7S.

  • Zhang and Jin (1996, p. 323) tabulates the first 20 real zeros of ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , 8D.

  • 4: 25.6 Integer Arguments
    §25.6(i) Function Values
    25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    25.6.11 ζ ( 0 ) = 1 2 ln ( 2 π ) .
    25.6.12 ζ ′′ ( 0 ) = 1 2 ( ln ( 2 π ) ) 2 + 1 2 γ 2 1 24 π 2 + γ 1 ,
    25.6.15 ζ ( 2 n ) = ( 1 ) n + 1 ( 2 π ) 2 n 2 ( 2 n ) ! ( 2 n ζ ( 1 2 n ) ( ψ ( 2 n ) ln ( 2 π ) ) B 2 n ) .
    5: 5.11 Asymptotic Expansions
    5.11.1 Ln Γ ( z ) ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + k = 1 B 2 k 2 k ( 2 k 1 ) z 2 k 1
    5.11.2 ψ ( z ) ln z 1 2 z k = 1 B 2 k 2 k z 2 k .
    Wrench (1968) gives exact values of g k up to g 20 . …
    5.11.8 Ln Γ ( z + h ) ( z + h 1 2 ) ln z z + 1 2 ln ( 2 π ) + k = 2 ( 1 ) k B k ( h ) k ( k 1 ) z k 1 ,
    For further information see Olver (1997b, pp. 293–295), and for other error bounds see Whittaker and Watson (1927, §12.33), Spira (1971), and Schäfke and Finsterer (1990). …
    6: 18.39 Applications in the Physical Sciences
    For further details about the Schrödinger equation, including applications in physics and chemistry, see Gottfried and Yan (2004) and Pauling and Wilson (1985), respectively, among many others. …
    Other Analytically Solved Schrödinger Equations
    Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. … Shizgal (2015, Chapter 2), contains a broad-ranged discussion of methods and applications for these, and other, non-classical weight functions. …
    §18.39(v) Other Applications
    7: 11.6 Asymptotic Expansions
    11.6.3 0 z 𝐊 0 ( t ) d t 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 1 ) k + 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | π δ ,
    11.6.4 0 z 𝐌 0 ( t ) d t + 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | 1 2 π δ ,
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    8: 9.9 Zeros
    Ai ( z ) and Ai ( z ) have no other zeros. …
    9.9.6 a k = T ( 3 8 π ( 4 k 1 ) ) ,
    9.9.7 Ai ( a k ) = ( 1 ) k 1 V ( 3 8 π ( 4 k 1 ) ) ,
    9.9.8 a k = U ( 3 8 π ( 4 k 3 ) ) ,
    9.9.9 Ai ( a k ) = ( 1 ) k 1 W ( 3 8 π ( 4 k 3 ) ) .