About the Project

ordinary%20point

AdvancedHelp

(0.001 seconds)

5 matching pages

1: Bibliography W
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • W. Wasow (1965) Asymptotic Expansions for Ordinary Differential Equations. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney.
  • W. Wasow (1985) Linear Turning Point Theory. Applied Mathematical Sciences No. 54, Springer-Verlag, New York.
  • H. S. Wilf and D. Zeilberger (1992a) An algorithmic proof theory for hypergeometric (ordinary and “ q ”) multisum/integral identities. Invent. Math. 108, pp. 575–633.
  • 2: Bibliography I
  • IEEE (2008) IEEE Standard for Floating-Point Arithmetic. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2019) IEEE International Standard for Information Technology—Microprocessor Systems—Floating-Point arithmetic: IEEE Std 754-2019. The Institute of Electrical and Electronics Engineers, Inc..
  • E. L. Ince (1926) Ordinary Differential Equations. Longmans, Green and Co., London.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • 3: Bibliography D
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1996c) Error bounds for exponentially improved asymptotic solutions of ordinary differential equations having irregular singularities of rank one. Methods Appl. Anal. 3 (1), pp. 109–134.
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • T. M. Dunster (2004) Convergent expansions for solutions of linear ordinary differential equations having a simple pole, with an application to associated Legendre functions. Stud. Appl. Math. 113 (3), pp. 245–270.
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.
  • 4: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1994) Exponentially improved asymptotic solutions of ordinary differential equations. II Irregular singularities of rank one. Proc. Roy. Soc. London Ser. A 445, pp. 39–56.
  • A. B. Olde Daalhuis and F. W. J. Olver (1998) On the asymptotic and numerical solution of linear ordinary differential equations. SIAM Rev. 40 (3), pp. 463–495.
  • A. B. Olde Daalhuis (2004b) On higher-order Stokes phenomena of an inhomogeneous linear ordinary differential equation. J. Comput. Appl. Math. 169 (1), pp. 235–246.
  • F. W. J. Olver (1993a) Exponentially-improved asymptotic solutions of ordinary differential equations I: The confluent hypergeometric function. SIAM J. Math. Anal. 24 (3), pp. 756–767.
  • F. W. J. Olver (1997a) Asymptotic solutions of linear ordinary differential equations at an irregular singularity of rank unity. Methods Appl. Anal. 4 (4), pp. 375–403.
  • 5: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • G. Birkhoff and G. Rota (1989) Ordinary differential equations. Fourth edition, John Wiley & Sons, Inc., New York.
  • W. J. Braithwaite (1973) Associated Legendre polynomials, ordinary and modified spherical harmonics. Comput. Phys. Comm. 5 (5), pp. 390–394.
  • J. C. Butcher (1987) The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and General Linear Methods. John Wiley & Sons Ltd., Chichester.
  • J. C. Butcher (2003) Numerical Methods for Ordinary Differential Equations. John Wiley & Sons Ltd., Chichester.