About the Project

of the first kind

AdvancedHelp

(0.011 seconds)

11—20 of 282 matching pages

11: 29.17 Other Solutions
29.17.1 F ( z ) = E ( z ) i K z d u ( E ( u ) ) 2 .
They are algebraic functions of sn ( z , k ) , cn ( z , k ) , and dn ( z , k ) , and have primitive period 8 K . … Lamé–Wangerin functions are solutions of (29.2.1) with the property that ( sn ( z , k ) ) 1 / 2 w ( z ) is bounded on the line segment from i K to 2 K + i K . …
12: 14.9 Connection Formulas
§14.9(i) Connections Between 𝖯 ν ± μ ( x ) , 𝖯 ν 1 ± μ ( x ) , 𝖰 ν ± μ ( x ) , 𝖰 ν 1 μ ( x )
𝖯 ν 1 μ ( x ) = 𝖯 ν μ ( x ) ,
𝖯 ν 1 μ ( x ) = 𝖯 ν μ ( x ) ,
§14.9(ii) Connections Between 𝖯 ν ± μ ( ± x ) , 𝖰 ν μ ( ± x ) , 𝖰 ν μ ( x )
P ν 1 μ ( x ) = P ν μ ( x ) ,
13: 14.33 Tables
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 5–8D; 𝖯 n ( x ) for n = 1 ( 1 ) 4 , 9 , 10 , x = 0 ( .01 ) 1 , 5–7D; 𝖰 n ( x ) and 𝖰 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 6–8D; P n ( x ) and P n ( x ) for n = 0 ( 1 ) 5 , 9 , 10 , x = 1 ( .2 ) 10 , 6S; Q n ( x ) and Q n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 1 ( .2 ) 10 , 6S. (Here primes denote derivatives with respect to x .)

  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Belousov (1962) tabulates 𝖯 n m ( cos θ ) (normalized) for m = 0 ( 1 ) 36 , n m = 0 ( 1 ) 56 , θ = 0 ( 2.5 ) 90 , 6D.

  • Žurina and Karmazina (1964, 1965) tabulate the conical functions 𝖯 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7D. Auxiliary tables are included to facilitate computation for larger values of τ when 1 < x < 1 .

  • Žurina and Karmazina (1963) tabulates the conical functions 𝖯 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7S. Auxiliary tables are included to assist computation for larger values of τ when 1 < x < 1 .

  • 14: 14.18 Sums
    14.18.1 𝖯 ν ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = 𝖯 ν ( cos θ 1 ) 𝖯 ν ( cos θ 2 ) + 2 m = 1 ( 1 ) m 𝖯 ν m ( cos θ 1 ) 𝖯 ν m ( cos θ 2 ) cos ( m ϕ ) ,
    14.18.2 𝖯 n ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = m = n n ( 1 ) m 𝖯 n m ( cos θ 1 ) 𝖯 n m ( cos θ 2 ) cos ( m ϕ ) .
    14.18.3 𝖰 ν ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = 𝖯 ν ( cos θ 1 ) 𝖰 ν ( cos θ 2 ) + 2 m = 1 ( 1 ) m 𝖯 ν m ( cos θ 1 ) 𝖰 ν m ( cos θ 2 ) cos ( m ϕ ) .
    14.18.6 ( x y ) k = 0 n ( 2 k + 1 ) P k ( x ) P k ( y ) = ( n + 1 ) ( P n + 1 ( x ) P n ( y ) P n ( x ) P n + 1 ( y ) ) ,
    14.18.7 ( x y ) k = 0 n ( 2 k + 1 ) P k ( x ) Q k ( y ) = ( n + 1 ) ( P n + 1 ( x ) Q n ( y ) P n ( x ) Q n + 1 ( y ) ) 1 .
    15: 14.4 Graphics
    See accompanying text
    Figure 14.4.1: 𝖯 ν 0 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.2: 𝖰 ν 0 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.3: 𝖯 ν 1 / 2 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.4: 𝖰 ν 1 / 2 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.5: 𝖯 ν 1 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    16: 29.4 Graphics
    See accompanying text
    Figure 29.4.13: 𝐸𝑐 1.5 m ( x , 0.5 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 1.85407 . Magnify
    See accompanying text
    Figure 29.4.14: 𝐸𝑠 1.5 m ( x , 0.5 ) for 2 K x 2 K , m = 1 , 2 , 3 . K = 1.85407 . Magnify
    See accompanying text
    Figure 29.4.15: 𝐸𝑐 1.5 m ( x , 0.1 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify
    See accompanying text
    Figure 29.4.16: 𝐸𝑠 1.5 m ( x , 0.1 ) for 2 K x 2 K , m = 1 , 2 , 3 . K = 1.61244 . Magnify
    See accompanying text
    Figure 29.4.17: 𝐸𝑐 1.5 m ( x , 0.9 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 2.57809 . Magnify
    17: 10.26 Graphics
    See accompanying text
    Figure 10.26.1: I 0 ( x ) , I 1 ( x ) , K 0 ( x ) , K 1 ( x ) , 0 x 3 . Magnify
    See accompanying text
    Figure 10.26.2: e x I 0 ( x ) , e x I 1 ( x ) , e x K 0 ( x ) , e x K 1 ( x ) , 0 x 10 . Magnify
    See accompanying text
    Figure 10.26.7: I ~ 1 / 2 ( x ) , K ~ 1 / 2 ( x ) , 0.01 x 3 . Magnify
    See accompanying text
    Figure 10.26.8: I ~ 1 ( x ) , K ~ 1 ( x ) , 0.01 x 3 . Magnify
    See accompanying text
    Figure 10.26.9: I ~ 5 ( x ) , K ~ 5 ( x ) , 0.01 x 3 . Magnify
    18: 14.11 Derivatives with Respect to Degree or Order
    (14.11.1) holds if 𝖯 ν μ ( x ) is replaced by P ν μ ( x ) , provided that the factor ( ( 1 + x ) / ( 1 x ) ) μ / 2 in (14.11.3) is replaced by ( ( x + 1 ) / ( x 1 ) ) μ / 2 . (14.11.4) holds if 𝖯 ν μ ( x ) , 𝖯 ν ( x ) , and 𝖰 ν ( x ) are replaced by P ν μ ( x ) , P ν ( x ) , and Q ν ( x ) , respectively. …
    19: 14.17 Integrals
    14.17.3 x 𝖯 ν μ ( x ) 𝖰 ν μ ( x ) d x = 1 2 ν ( ν + 1 ) ( ( μ 2 ( ν + 1 ) ( ν + x 2 ) ) 𝖯 ν μ ( x ) 𝖰 ν μ ( x ) + ( ν + 1 ) ( ν μ + 1 ) x ( 𝖯 ν μ ( x ) 𝖰 ν + 1 μ ( x ) + 𝖯 ν + 1 μ ( x ) 𝖰 ν μ ( x ) ) ( ν μ + 1 ) 2 𝖯 ν + 1 μ ( x ) 𝖰 ν + 1 μ ( x ) ) , ν 0 , 1 .
    14.17.4 x ( 1 x 2 ) 3 / 2 𝖯 ν μ ( x ) 𝖰 ν μ ( x ) d x = 1 ( 1 4 μ 2 ) ( 1 x 2 ) 1 / 2 ( ( 1 2 μ 2 + 2 ν ( ν + 1 ) ) 𝖯 ν μ ( x ) 𝖰 ν μ ( x ) + ( 2 ν + 1 ) ( μ ν 1 ) x ( 𝖯 ν μ ( x ) 𝖰 ν + 1 μ ( x ) + 𝖯 ν + 1 μ ( x ) 𝖰 ν μ ( x ) ) + 2 ( μ ν 1 ) 2 𝖯 ν + 1 μ ( x ) 𝖰 ν + 1 μ ( x ) ) , μ ± 1 2 .
    In (14.17.1)–(14.17.4), 𝖯 may be replaced by 𝖰 , and in (14.17.3) and (14.17.4), 𝖰 may be replaced by 𝖯 . …
    14.17.17 0 π 𝖰 l ( cos θ ) 𝖯 m ( cos θ ) 𝖯 n ( cos θ ) sin θ d θ = 0 , l , m , n = 1 , 2 , 3 , , | m n | < l < m + n .
    20: 14.1 Special Notation
    The main functions treated in this chapter are the Legendre functions 𝖯 ν ( x ) , 𝖰 ν ( x ) , P ν ( z ) , Q ν ( z ) ; Ferrers functions 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) (also known as the Legendre functions on the cut); associated Legendre functions P ν μ ( z ) , Q ν μ ( z ) , 𝑸 ν μ ( z ) ; conical functions 𝖯 1 2 + i τ μ ( x ) , 𝖰 1 2 + i τ μ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) , P 1 2 + i τ μ ( x ) , Q 1 2 + i τ μ ( x ) (also known as Mehler functions). … Among other notations commonly used in the literature Erdélyi et al. (1953a) and Olver (1997b) denote 𝖯 ν μ ( x ) and 𝖰 ν μ ( x ) by P ν μ ( x ) and Q ν μ ( x ) , respectively. Magnus et al. (1966) denotes 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) , P ν μ ( z ) , and Q ν μ ( z ) by P ν μ ( x ) , Q ν μ ( x ) , 𝔓 ν μ ( z ) , and 𝔔 ν μ ( z ) , respectively. Hobson (1931) denotes both 𝖯 ν μ ( x ) and P ν μ ( x ) by P ν μ ( x ) ; similarly for 𝖰 ν μ ( x ) and Q ν μ ( x ) .