About the Project

of multivalued function

AdvancedHelp

(0.004 seconds)

11—20 of 37 matching pages

11: 4.15 Graphics
§4.15(i) Real Arguments
See accompanying text
Figure 4.15.2: Arcsin x and Arccos x . … Magnify
§4.15(iii) Complex Arguments: Surfaces
In the graphics shown in this subsection height corresponds to the absolute value of the function and color to the phase. … The corresponding surfaces for arccos ( x + i y ) , arccot ( x + i y ) , arcsec ( x + i y ) can be visualized from Figures 4.15.9, 4.15.11, 4.15.13 with the aid of equations (4.23.16)–(4.23.18).
12: 4.24 Inverse Trigonometric Functions: Further Properties
4.24.13 Arcsin u ± Arcsin v = Arcsin ( u ( 1 v 2 ) 1 / 2 ± v ( 1 u 2 ) 1 / 2 ) ,
4.24.14 Arccos u ± Arccos v = Arccos ( u v ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) ,
4.24.15 Arctan u ± Arctan v = Arctan ( u ± v 1 u v ) ,
4.24.16 Arcsin u ± Arccos v = Arcsin ( u v ± ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) = Arccos ( v ( 1 u 2 ) 1 / 2 u ( 1 v 2 ) 1 / 2 ) ,
4.24.17 Arctan u ± Arccot v = Arctan ( u v ± 1 v u ) = Arccot ( v u u v ± 1 ) .
13: 4.1 Special Notation
The main functions treated in this chapter are the logarithm ln z , Ln z ; the exponential exp z , e z ; the circular trigonometric (or just trigonometric) functions sin z , cos z , tan z , csc z , sec z , cot z ; the inverse trigonometric functions arcsin z , Arcsin z , etc. ; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
14: 22.18 Mathematical Applications
This circumvents the cumbersome branch structure of the multivalued functions x ( y ) or y ( x ) , and constitutes the process of uniformization; see Siegel (1988, Chapter II). …
15: 16.2 Definition and Analytic Properties
Elsewhere the generalized hypergeometric function is a multivalued function that is analytic except for possible branch points at z = 0 , 1 , and . …
16: 15.2 Definitions and Analytical Properties
As a multivalued function of z , 𝐅 ( a , b ; c ; z ) is analytic everywhere except for possible branch points at z = 0 , 1 , and . …
17: 4.38 Inverse Hyperbolic Functions: Further Properties
4.38.15 Arcsinh u ± Arcsinh v = Arcsinh ( u ( 1 + v 2 ) 1 / 2 ± v ( 1 + u 2 ) 1 / 2 ) ,
4.38.16 Arccosh u ± Arccosh v = Arccosh ( u v ± ( ( u 2 1 ) ( v 2 1 ) ) 1 / 2 ) ,
4.38.17 Arctanh u ± Arctanh v = Arctanh ( u ± v 1 ± u v ) ,
4.38.18 Arcsinh u ± Arccosh v = Arcsinh ( u v ± ( ( 1 + u 2 ) ( v 2 1 ) ) 1 / 2 ) = Arccosh ( v ( 1 + u 2 ) 1 / 2 ± u ( v 2 1 ) 1 / 2 ) ,
4.38.19 Arctanh u ± Arccoth v = Arctanh ( u v ± 1 v ± u ) = Arccoth ( v ± u u v ± 1 ) .
18: 5.9 Integral Representations
5.9.10 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 2 0 arctan ( t / z ) e 2 π t 1 d t ,
5.9.10_1 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) z π 0 ln ( 1 e 2 π t ) t 2 + z 2 d t ,
5.9.10_2 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 0 e z t ( 1 e t 1 1 t + 1 2 ) d t t ,
5.9.11 Ln Γ ( z + 1 ) = γ z 1 2 π i c i c + i π z s s sin ( π s ) ζ ( s ) d s ,
19: 10.68 Modulus and Phase Functions
§10.68 Modulus and Phase Functions
§10.68(i) Definitions
§10.68(ii) Basic Properties
§10.68(iii) Asymptotic Expansions for Large Argument
Additional properties of the modulus and phase functions are given in Young and Kirk (1964, pp. xi–xv). …
20: 8.21 Generalized Sine and Cosine Integrals
From §§8.2(i) and 8.2(ii) it follows that each of the four functions si ( a , z ) , ci ( a , z ) , Si ( a , z ) , and Ci ( a , z ) is a multivalued function of z with branch point at z = 0 . …