About the Project

of large argument

AdvancedHelp

(0.001 seconds)

21—30 of 44 matching pages

21: 33.11 Asymptotic Expansions for Large ρ
§33.11 Asymptotic Expansions for Large ρ
For large ρ , with and η fixed, …
33.11.4 H ± ( η , ρ ) = e ± i θ ( f ( η , ρ ) ± i g ( η , ρ ) ) ,
33.11.7 g ( η , ρ ) f ^ ( η , ρ ) f ( η , ρ ) g ^ ( η , ρ ) = 1 .
22: Bibliography P
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • 23: 35.10 Methods of Computation
    §35.10 Methods of Computation
    For large 𝐓 the asymptotic approximations referred to in §35.7(iv) are available. … See Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ( m ) applied to a generalization of the integral (35.5.8). … These algorithms are extremely efficient, converge rapidly even for large values of m , and have complexity linear in m .
    24: 9.7 Asymptotic Expansions
    9.7.3 χ ( x ) π 1 / 2 Γ ( 1 2 x + 1 ) / Γ ( 1 2 x + 1 2 ) .
    For large x ,
    9.7.4 χ ( x ) ( 1 2 π x ) 1 / 2 .
    25: 10.1 Special Notation
    For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
    26: 14.32 Methods of Computation
    In particular, for small or moderate values of the parameters μ and ν the power-series expansions of the various hypergeometric function representations given in §§14.3(i)14.3(iii), 14.19(ii), and 14.20(i) can be selected in such a way that convergence is stable, and reasonably rapid, especially when the argument of the functions is real. …
  • Application of the uniform asymptotic expansions for large values of the parameters given in §§14.15 and 14.20(vii)14.20(ix).

  • 27: 14.26 Uniform Asymptotic Expansions
    §14.26 Uniform Asymptotic Expansions
    For an extension of §14.15(iv) to complex argument and imaginary parameters, see Dunster (1990b). …
    28: Bibliography Z
  • J. Zhang and J. A. Belward (1997) Chebyshev series approximations for the Bessel function Y n ( z ) of complex argument. Appl. Math. Comput. 88 (2-3), pp. 275–286.
  • S. Zhang and J. Jin (1996) Computation of Special Functions. John Wiley & Sons Inc., New York.
  • 29: 10.74 Methods of Computation
    The power-series expansions given in §§10.2 and 10.8, together with the connection formulas of §10.4, can be used to compute the Bessel and Hankel functions when the argument x or z is sufficiently small in absolute value. … If x or | z | is large compared with | ν | 2 , then the asymptotic expansions of §§10.17(i)10.17(iv) are available. … For large positive real values of ν the uniform asymptotic expansions of §§10.20(i) and 10.20(ii) can be used. Moreover, because of their double asymptotic properties (§10.41(v)) these expansions can also be used for large x or | z | , whether or not ν is large. … And since there are no error terms they could, in theory, be used for all values of z ; however, there may be severe cancellation when | z | is not large compared with n 2 . …
    30: Bibliography L
  • R. E. Langer (1934) The solutions of the Mathieu equation with a complex variable and at least one parameter large. Trans. Amer. Math. Soc. 36 (3), pp. 637–695.
  • S. Lewanowicz (1985) Recurrence relations for hypergeometric functions of unit argument. Math. Comp. 45 (172), pp. 521–535.
  • S. Lewanowicz (1987) Corrigenda: “Recurrence relations for hypergeometric functions of unit argument” [Math. Comp. 45 (1985), no. 172, 521–535; MR 86m:33004]. Math. Comp. 48 (178), pp. 853.
  • J. L. López (1999) Asymptotic expansions of the Whittaker functions for large order parameter. Methods Appl. Anal. 6 (2), pp. 249–256.
  • J. L. López and N. M. Temme (2010b) Large degree asymptotics of generalized Bernoulli and Euler polynomials. J. Math. Anal. Appl. 363 (1), pp. 197–208.