About the Project

of imaginary argument

AdvancedHelp

(0.003 seconds)

11—20 of 73 matching pages

11: 15.19 Methods of Computation
For z it is possible to use the linear transformations in such a way that the new arguments lie within the unit circle, except when z = e ± π i / 3 . This is because the linear transformations map the pair { e π i / 3 , e π i / 3 } onto itself. …
12: 4.3 Graphics
§4.3(i) Real Arguments
§4.3(ii) Complex Arguments: Conformal Maps
Figure 4.3.2 illustrates the conformal mapping of the strip π < z < π onto the whole w -plane cut along the negative real axis, where w = e z and z = ln w (principal value). …Lines parallel to the real axis in the z -plane map onto rays in the w -plane, and lines parallel to the imaginary axis in the z -plane map onto circles centered at the origin in the w -plane. …
§4.3(iii) Complex Arguments: Surfaces
13: 5.22 Tables
This reference also includes ψ ( x + i y ) for the same arguments to 5D. …
14: Bibliography D
  • T. M. Dunster (1990a) Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21 (4), pp. 995–1018.
  • T. M. Dunster (2013) Conical functions of purely imaginary order and argument. Proc. Roy. Soc. Edinburgh Sect. A 143 (5), pp. 929–955.
  • 15: Bibliography G
  • A. Gil, J. Segura, and N. M. Temme (2004a) Algorithm 831: Modified Bessel functions of imaginary order and positive argument. ACM Trans. Math. Software 30 (2), pp. 159–164.
  • A. Gil, J. Segura, and N. M. Temme (2004b) Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments. ACM Trans. Math. Software 30 (2), pp. 145–158.
  • 16: Software Index
    17: 15.4 Special Cases
    18: 14.20 Conical (or Mehler) Functions
    For the case of purely imaginary order and argument see Dunster (2013). …
    19: 10.61 Definitions and Basic Properties
    In general, Kelvin functions have a branch point at x = 0 and functions with arguments x e ± π i are complex. …
    20: 33.11 Asymptotic Expansions for Large ρ
    33.11.4 H ± ( η , ρ ) = e ± i θ ( f ( η , ρ ) ± i g ( η , ρ ) ) ,