About the Project
NIST

of bounded variation

AdvancedHelp

(0.003 seconds)

11—13 of 13 matching pages

11: Bibliography P
  • R. B. Paris (2002a) Error bounds for the uniform asymptotic expansion of the incomplete gamma function. J. Comput. Appl. Math. 147 (1), pp. 215–231.
  • T. G. Pedersen (2003) Variational approach to excitons in carbon nanotubes. Phys. Rev. B 67 (7), pp. (073401–1)–(073401–4).
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • 12: 2.7 Differential Equations
    For error bounds for (2.7.14) see Olver (1997b, Chapter 7). … For irregular singularities of nonclassifiable rank, a powerful tool for finding the asymptotic behavior of solutions, complete with error bounds, is as follows: … provided that 𝒱 a j , x ( F ) < . …and 𝒱 denotes the variational operator (§2.3(i)). … Assuming also 𝒱 a 1 , a 2 ( F ) < , we have …
    13: Bibliography M
  • J. P. Mills (1926) Table of the ratio: Area to bounding ordinate, for any portion of normal curve. Biometrika 18, pp. 395–400.
  • C. Mortici (2011b) New sharp bounds for gamma and digamma functions. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 57 (1), pp. 57–60.
  • C. Mortici (2013b) Further improvements of some double inequalities for bounding the gamma function. Math. Comput. Modelling 57 (5-6), pp. 1360–1363.
  • R. J. Muirhead (1978) Latent roots and matrix variates: A review of some asymptotic results. Ann. Statist. 6 (1), pp. 5–33.
  • M. E. Muldoon (1981) The variation with respect to order of zeros of Bessel functions. Rend. Sem. Mat. Univ. Politec. Torino 39 (2), pp. 15–25.