About the Project

of a complex variable

AdvancedHelp

(0.036 seconds)

11—20 of 469 matching pages

11: 15.15 Sums
15.15.1 𝐅 ( a , b c ; 1 z ) = ( 1 z 0 z ) a s = 0 ( a ) s s ! 𝐅 ( s , b c ; 1 z 0 ) ( 1 z z 0 ) s .
12: 35.3 Multivariate Gamma and Beta Functions
35.3.4 Γ m ( a ) = π m ( m 1 ) / 4 j = 1 m Γ ( a 1 2 ( j 1 ) ) .
35.3.6 Γ m ( a , , a ) = Γ m ( a ) .
35.3.7 B m ( a , b ) = Γ m ( a ) Γ m ( b ) Γ m ( a + b ) .
13: 9.14 Incomplete Airy Functions
Incomplete Airy functions are defined by the contour integral (9.5.4) when one of the integration limits is replaced by a variable real or complex parameter. …
14: 8.7 Series Expansions
8.7.1 γ ( a , z ) = e z k = 0 z k Γ ( a + k + 1 ) = 1 Γ ( a ) k = 0 ( z ) k k ! ( a + k ) .
8.7.3 Γ ( a , z ) = Γ ( a ) k = 0 ( 1 ) k z a + k k ! ( a + k ) = Γ ( a ) ( 1 z a e z k = 0 z k Γ ( a + k + 1 ) ) , a 0 , 1 , 2 , .
8.7.5 γ ( a , z ) = e 1 2 z n = 0 ( 1 a ) n Γ ( n + a + 1 ) ( 2 n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) .
8.7.6 Γ ( a , x ) = x a e x n = 0 L n ( a ) ( x ) n + 1 , x > 0 , a < 1 2 .
15: 16.19 Identities
16.19.1 G p , q m , n ( 1 z ; a 1 , , a p b 1 , , b q ) = G q , p n , m ( z ; 1 b 1 , , 1 b q 1 a 1 , , 1 a p ) ,
16.19.2 z μ G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) = G p , q m , n ( z ; a 1 + μ , , a p + μ b 1 + μ , , b q + μ ) ,
16.19.3 G p + 1 , q + 1 m , n + 1 ( z ; a 0 , , a p b 1 , , b q , a 0 ) = G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) ,
16.19.5 ϑ G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) = G p , q m , n ( z ; a 1 1 , a 2 , , a p b 1 , , b q ) + ( a 1 1 ) G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) ,
16.19.6 0 1 t a 0 ( 1 t ) a 0 b q + 1 1 G p , q m , n ( z t ; a 1 , , a p b 1 , , b q ) d t = Γ ( a 0 b q + 1 ) G p + 1 , q + 1 m , n + 1 ( z ; a 0 , , a p b 1 , , b q + 1 ) ,
16: 16.12 Products
16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .
17: 8.21 Generalized Sine and Cosine Integrals
8.21.20 si ( a , z ) = f ( a , z ) cos z + g ( a , z ) sin z ,
8.21.21 ci ( a , z ) = f ( a , z ) sin z + g ( a , z ) cos z .
8.21.22 f ( a , z ) = 0 sin t ( t + z ) 1 a d t ,
8.21.23 g ( a , z ) = 0 cos t ( t + z ) 1 a d t .
8.21.26 f ( a , z ) z a 1 k = 0 ( 1 ) k ( 1 a ) 2 k z 2 k ,
18: 8.5 Confluent Hypergeometric Representations
8.5.1 γ ( a , z ) = a 1 z a e z M ( 1 , 1 + a , z ) = a 1 z a M ( a , 1 + a , z ) , a 0 , 1 , 2 , .
8.5.2 γ ( a , z ) = e z 𝐌 ( 1 , 1 + a , z ) = 𝐌 ( a , 1 + a , z ) .
8.5.3 Γ ( a , z ) = e z U ( 1 a , 1 a , z ) = z a e z U ( 1 , 1 + a , z ) .
8.5.4 γ ( a , z ) = a 1 z 1 2 a 1 2 e 1 2 z M 1 2 a 1 2 , 1 2 a ( z ) .
8.5.5 Γ ( a , z ) = e 1 2 z z 1 2 a 1 2 W 1 2 a 1 2 , 1 2 a ( z ) .
19: 15.8 Transformations of Variable
15.8.12 𝐅 ( a , b ; a + b m ; z ) = ( 1 z ) m 𝐅 ( a ~ , b ~ ; a ~ + b ~ + m ; z ) , a ~ = a m , b ~ = b m .
15.8.13 F ( a , b 2 b ; z ) = ( 1 1 2 z ) a F ( 1 2 a , 1 2 a + 1 2 b + 1 2 ; ( z 2 z ) 2 ) , | ph ( 1 z ) | < π ,
15.8.14 F ( a , b 2 b ; z ) = ( 1 z ) a / 2 F ( 1 2 a , b 1 2 a b + 1 2 ; z 2 4 z 4 ) , | ph ( 1 z ) | < π .
15.8.15 F ( a , b a b + 1 ; z ) = ( 1 + z ) a F ( 1 2 a , 1 2 a + 1 2 a b + 1 ; 4 z ( 1 + z ) 2 ) , | z | < 1 ,
15.8.16 F ( a , b a b + 1 ; z ) = ( 1 z ) a F ( 1 2 a , 1 2 a b + 1 2 a b + 1 ; 4 z ( 1 z ) 2 ) , | z | < 1 .
20: 8.2 Definitions and Basic Properties
8.2.8 γ ( a , z e 2 π m i ) = e 2 π m i a γ ( a , z ) , a 0 , 1 , 2 , ,
8.2.9 Γ ( a , z e 2 π m i ) = e 2 π m i a Γ ( a , z ) + ( 1 e 2 π m i a ) Γ ( a ) .
8.2.12 d 2 w d z 2 + ( 1 + 1 a z ) d w d z = 0 .
8.2.13 d 2 w d z 2 ( 1 + 1 a z ) d w d z + 1 a z 2 w = 0 .