About the Project

of%20the%20second%20kind

AdvancedHelp

(0.005 seconds)

1—10 of 20 matching pages

1: 10.75 Tables
  • British Association for the Advancement of Science (1937) tabulates I 0 ( x ) , I 1 ( x ) , x = 0 ( .001 ) 5 , 7–8D; K 0 ( x ) , K 1 ( x ) , x = 0.01 ( .01 ) 5 , 7–10D; e x I 0 ( x ) , e x I 1 ( x ) , e x K 0 ( x ) , e x K 1 ( x ) , x = 5 ( .01 ) 10 ( .1 ) 20 , 8D. Also included are auxiliary functions to facilitate interpolation of the tables of K 0 ( x ) , K 1 ( x ) for small values of x .

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • The main tables in Abramowitz and Stegun (1964, Chapter 9) give e x I n ( x ) , e x K n ( x ) , n = 0 , 1 , 2 , x = 0 ( .1 ) 10 ( .2 ) 20 , 8D–10D or 10S; x e x I n ( x ) , ( x / π ) e x K n ( x ) , n = 0 , 1 , 2 , 1 / x = 0 ( .002 ) 0.05 ; K 0 ( x ) + I 0 ( x ) ln x , x ( K 1 ( x ) I 1 ( x ) ln x ) , x = 0 ( .1 ) 2 , 8D; e x I n ( x ) , e x K n ( x ) , n = 3 ( 1 ) 9 , x = 0 ( .2 ) 10 ( .5 ) 20 , 5S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100 , x = 1 , 2 , 5 , 10 , 50 , 100 , 9–10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Zhang and Jin (1996, p. 271) tabulates e x 0 x I 0 ( t ) d t , e x 0 x t 1 ( I 0 ( t ) 1 ) d t , e x x K 0 ( t ) d t , x e x x t 1 K 0 ( t ) d t , x = 0 ( .1 ) 1 ( .5 ) 20 , 8D.

  • 2: 19.36 Methods of Computation
    Thompson (1997, pp. 499, 504) uses descending Landen transformations for both F ( ϕ , k ) and E ( ϕ , k ) . …For computation of K ( k ) and E ( k ) with complex k see Fettis and Caslin (1969) and Morita (1978). … Lee (1990) compares the use of theta functions for computation of K ( k ) , E ( k ) , and K ( k ) E ( k ) , 0 k 2 1 , with four other methods. …For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). For integrals of the second and third kinds see Lawden (1989, §§3.4–3.7). …
    3: Bibliography M
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • 4: Bibliography F
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • 5: Software Index
    6: 18.5 Explicit Representations
    and two similar formulas by symmetry; compare the second row in Table 18.6.1. …
    T 5 ( x ) = 16 x 5 20 x 3 + 5 x ,
    U 0 ( x ) = 1 ,
    U 1 ( x ) = 2 x ,
    U 2 ( x ) = 4 x 2 1 ,
    7: 14.30 Spherical and Spheroidal Harmonics
    Y l m ( θ , ϕ ) are known as surface harmonics of the first kind: tesseral for | m | < l and sectorial for | m | = l . … P n m ( x ) and Q n m ( x ) ( x > 1 ) are often referred to as the prolate spheroidal harmonics of the first and second kinds, respectively. P n m ( i x ) and Q n m ( i x ) ( x > 0 ) are known as oblate spheroidal harmonics of the first and second kinds, respectively. Segura and Gil (1999) introduced the scaled oblate spheroidal harmonics R n m ( x ) = e i π n / 2 P n m ( i x ) and T n m ( x ) = i e i π n / 2 Q n m ( i x ) which are real when x > 0 and n = 0 , 1 , 2 , . … Most mathematical properties of Y l , m ( θ , ϕ ) can be derived directly from (14.30.1) and the properties of the Ferrers function of the first kind given earlier in this chapter. …
    8: Bibliography L
  • A. Laforgia (1979) On the Zeros of the Derivative of Bessel Functions of Second Kind. Pubblicazioni Serie III [Publication Series III], Vol. 179, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), Rome.
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. K. Lee (1990) Application of theta functions for numerical evaluation of complete elliptic integrals of the first and second kinds. Comput. Phys. Comm. 60 (3), pp. 319–327.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • N. A. Lukaševič (1971) The second Painlevé equation. Differ. Uravn. 7 (6), pp. 1124–1125 (Russian).
  • 9: 10.73 Physical Applications
    Consequently, Bessel functions J n ( x ) , and modified Bessel functions I n ( x ) , are central to the analysis of microwave and optical transmission in waveguides, including coaxial and fiber. See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). … On separation of variables into cylindrical coordinates, the Bessel functions J n ( x ) , and modified Bessel functions I n ( x ) and K n ( x ) , all appear. … The functions 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗁 n ( 1 ) ( x ) , and 𝗁 n ( 2 ) ( x ) arise in the solution (again by separation of variables) of the Helmholtz equation in spherical coordinates ρ , θ , ϕ 1.5(ii)): …With the spherical harmonic Y , m ( θ , ϕ ) defined as in §14.30(i), the solutions are of the form f = g ( k ρ ) Y , m ( θ , ϕ ) with g = 𝗃 , 𝗒 , 𝗁 ( 1 ) , or 𝗁 ( 2 ) , depending on the boundary conditions. …
    10: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.