About the Project

of%20periodic%20functions

AdvancedHelp

(0.004 seconds)

9 matching pages

1: Bibliography I
  • J. Igusa (1972) Theta Functions. Springer-Verlag, New York.
  • E. L. Ince (1932) Tables of the elliptic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 52, pp. 355–433.
  • E. L. Ince (1940a) The periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 47–63.
  • E. L. Ince (1940b) Further investigations into the periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 83–99.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • 2: 22.3 Graphics
    §22.3(i) Real Variables: Line Graphs
    The period diverges logarithmically as k 1 ; see §19.12. …
    §22.3(iii) Complex z ; Real k
    §22.3(iv) Complex k
    In Figures 22.3.24 and 22.3.25, height corresponds to the absolute value of the function and color to the phase. …
    3: Bibliography K
  • P. L. Kapitsa (1951a) Heat conduction and diffusion in a fluid medium with a periodic flow. I. Determination of the wave transfer coefficient in a tube, slot, and canal. Akad. Nauk SSSR. Žurnal Eksper. Teoret. Fiz. 21, pp. 964–978.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • J. P. Keating (1999) Periodic Orbits, Spectral Statistics, and the Riemann Zeros. In Supersymmetry and Trace Formulae: Chaos and Disorder, J. P. Keating, D. E. Khmelnitskii, and I. V. Lerner (Eds.), pp. 1–15.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • I. M. Krichever (1976) An algebraic-geometrical construction of the Zakharov-Shabat equations and their periodic solutions. Sov. Math. Doklady 17, pp. 394–397.
  • 4: 25.11 Hurwitz Zeta Function
    §25.11 Hurwitz Zeta Function
    §25.11(i) Definition
    The Riemann zeta function is a special case: …
    §25.11(ii) Graphics
    For B ~ n ( x ) see §24.2(iii). …
    5: 24.2 Definitions and Generating Functions
    §24.2 Definitions and Generating Functions
    §24.2(ii) Euler Numbers and Polynomials
    §24.2(iii) Periodic Bernoulli and Euler Functions
    B ~ n ( x + 1 ) = B ~ n ( x ) ,
    E ~ n ( x + 1 ) = E ~ n ( x ) , x .
    6: Bibliography B
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • B. C. Berndt (1975b) Periodic Bernoulli numbers, summation formulas and applications. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143–189.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • M. Brack, M. Mehta, and K. Tanaka (2001) Occurrence of periodic Lamé functions at bifurcations in chaotic Hamiltonian systems. J. Phys. A 34 (40), pp. 8199–8220.
  • 7: 3.4 Differentiation
    B 2 5 = 1 120 ( 6 10 t 15 t 2 + 20 t 3 5 t 4 ) ,
    §3.4(ii) Analytic Functions
    As explained in §§3.5(i) and 3.5(ix) the composite trapezoidal rule can be very efficient for computing integrals with analytic periodic integrands. …
    3.4.33 4 u 0 , 0 = 1 h 4 ( 20 u 0 , 0 8 ( u 1 , 0 + u 0 , 1 + u 1 , 0 + u 0 , 1 ) + 2 ( u 1 , 1 + u 1 , 1 + u 1 , 1 + u 1 , 1 ) + ( u 0 , 2 + u 2 , 0 + u 2 , 0 + u 0 , 2 ) ) + O ( h 2 ) ,
    8: 18.39 Applications in the Physical Sciences
    The corresponding eigenfunction transform is a generalization of the Kontorovich–Lebedev transform §10.43(v), see Faraut (1982, §IV). … Physical scientists use the n of Bohr as, to 0 th and 1 st order, it describes the structure and organization of the Periodic Table of the Chemical Elements of which the Hydrogen atom is only the first. … Thus the overall degeneracy of the solutions (18.39.29) (the number of independent eigenfunctions corresponding to a single eigenvalue (18.39.31) for all values of l and m l ) consistent with each n is n 2 , which controls the lengths of the rows in the Periodic Table. …
    c) Spherical Radial Coulomb Wave Functions
    Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. …
    9: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • P. Gianni, M. Seppälä, R. Silhol, and B. Trager (1998) Riemann surfaces, plane algebraic curves and their period matrices. J. Symbolic Comput. 26 (6), pp. 789–803.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • S. Goldstein (1927) Mathieu functions. Trans. Camb. Philos. Soc. 23, pp. 303–336.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.