About the Project

of%20canonical%20integrals

AdvancedHelp

(0.003 seconds)

7 matching pages

1: 36.2 Catastrophes and Canonical Integrals
36.2.28 Ψ ( E ) ( 0 , 0 , z ) = Ψ ( E ) ( 0 , 0 , z ) ¯ = 2 π π z 27 exp ( 2 27 i z 3 ) ( J 1 / 6 ( 2 27 z 3 ) + i J 1 / 6 ( 2 27 z 3 ) ) , z 0 ,
36.2.29 Ψ ( H ) ( 0 , 0 , z ) = Ψ ( H ) ( 0 , 0 , z ) ¯ = 2 1 / 3 3 exp ( 1 27 i z 3 ) Ψ ( E ) ( 0 , 0 , z 2 2 / 3 ) , < z < .
2: Errata
  • Figures 36.3.9, 36.3.10, 36.3.11, 36.3.12

    Scales were corrected in all figures. The interval 8.4 x y 2 8.4 was replaced by 12.0 x y 2 12.0 and 12.7 x + y 2 4.2 replaced by 18.0 x + y 2 6.0 . All plots and interactive visualizations were regenerated to improve image quality.

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.9: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 0 ) | .

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.10: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 1 ) | .

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.11: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 2 ) | .

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.12: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 3 ) | .

    Reported 2016-09-12 by Dan Piponi.

  • Figures 36.3.18, 36.3.19, 36.3.20, 36.3.21

    The scaling error reported on 2016-09-12 by Dan Piponi also applied to contour and density plots for the phase of the hyperbolic umbilic canonical integrals. Scales were corrected in all figures. The interval 8.4 x y 2 8.4 was replaced by 12.0 x y 2 12.0 and 12.7 x + y 2 4.2 replaced by 18.0 x + y 2 6.0 . All plots and interactive visualizations were regenerated to improve image quality.

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.18: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 0 ) .

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.19: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 1 ) .

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.20: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 2 ) .

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.21: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 3 ) .

    Reported 2016-09-28.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • Equation (36.10.14)
    36.10.14 3 ( 2 Ψ ( E ) x 2 2 Ψ ( E ) y 2 ) + 2 i z Ψ ( E ) x x Ψ ( E ) = 0

    Originally this equation appeared with Ψ ( H ) x in the second term, rather than Ψ ( E ) x .

    Reported 2010-04-02.

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 3: 36.4 Bifurcation Sets
    K = 1 , fold bifurcation set: …
    x = 9 20 z 2 .
    x = 3 20 z 2 ,
    4: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • N. P. Kirk, J. N. L. Connor, and C. A. Hobbs (2000) An adaptive contour code for the numerical evaluation of the oscillatory cuspoid canonical integrals and their derivatives. Computer Physics Comm. 132 (1-2), pp. 142–165.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • D. A. Kofke (2004) Comment on “The incomplete beta function law for parallel tempering sampling of classical canonical systems” [J. Chem. Phys. 120, 4119 (2004)]. J. Chem. Phys. 121 (2), pp. 1167.
  • 5: 36.5 Stokes Sets
    §36.5(ii) Cuspoids
    §36.5(iii) Umbilics
    §36.5(iv) Visualizations
    Red and blue numbers in each region correspond, respectively, to the numbers of real and complex critical points that contribute to the asymptotics of the canonical integral away from the bifurcation sets. …
    See accompanying text
    Figure 36.5.8: Sheets of the Stokes surface for the elliptic umbilic catastrophe (colored and with mesh) and the bifurcation set (gray). Magnify
    6: Bibliography C
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • J. N. L. Connor, P. R. Curtis, and D. Farrelly (1983) A differential equation method for the numerical evaluation of the Airy, Pearcey and swallowtail canonical integrals and their derivatives. Molecular Phys. 48 (6), pp. 1305–1330.
  • J. N. L. Connor (1973) Evaluation of multidimensional canonical integrals in semiclassical collision theory. Molecular Phys. 26 (6), pp. 1371–1377.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 7: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • M. V. Berry and C. J. Howls (1994) Overlapping Stokes smoothings: Survival of the error function and canonical catastrophe integrals. Proc. Roy. Soc. London Ser. A 444, pp. 201–216.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • W. G. C. Boyd (1973) The asymptotic analysis of canonical problems in high-frequency scattering theory. II. The circular and parabolic cylinders. Proc. Cambridge Philos. Soc. 74, pp. 313–332.