About the Project

of%20a%20complex%20variable

AdvancedHelp

(0.009 seconds)

1—10 of 32 matching pages

1: 15.10 Hypergeometric Differential Equation
It has regular singularities at z = 0 , 1 , , with corresponding exponent pairs { 0 , 1 c } , { 0 , c a b } , { a , b } , respectively. … Moreover, in (15.10.9) and (15.10.10) the symbols a and b are interchangeable. (c) If the parameter c in the differential equation equals 2 n = 0 , 1 , 2 , , then fundamental solutions in the neighborhood of z = 0 are given by z n 1 times those in (a) and (b), with a and b replaced throughout by a + n 1 and b + n 1 , respectively. … (e) Finally, if a b + 1 equals n = 1 , 2 , 3 , , or 2 n = 0 , 1 , 2 , , then fundamental solutions in the neighborhood of z = are given by z a times those in (a), (b), and (c) with b and z replaced by a c + 1 and 1 / z , respectively. … The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
2: 25.11 Hurwitz Zeta Function
ζ ( s , a ) has a meromorphic continuation in the s -plane, its only singularity in being a simple pole at s = 1 with residue 1 . As a function of a , with s ( 1 ) fixed, ζ ( s , a ) is analytic in the half-plane a > 0 . … Most references treat real a with 0 < a 1 . …
a -Derivative
When a = 1 , (25.11.35) reduces to (25.2.3). …
3: 25.12 Polylogarithms
In the complex plane Li 2 ( z ) has a branch point at z = 1 . … For real or complex s and z the polylogarithm Li s ( z ) is defined by … For each fixed complex s the series defines an analytic function of z for | z | < 1 . … valid when s > 0 , a > 0 or s > 1 , a = 0 . … For a uniform asymptotic approximation for F s ( x ) see Temme and Olde Daalhuis (1990).
4: 12.11 Zeros
If a > 1 2 , then V ( a , x ) has no positive real zeros, and if a = 3 2 2 n , n , then V ( a , x ) has a zero at x = 0 .
§12.11(ii) Asymptotic Expansions of Large Zeros
When a > 1 2 , U ( a , z ) has a string of complex zeros that approaches the ray ph z = 3 4 π as z , and a conjugate string. When a > 1 2 the zeros are asymptotically given by z a , s and z a , s ¯ , where s is a large positive integer and … For large negative values of a the real zeros of U ( a , x ) , U ( a , x ) , V ( a , x ) , and V ( a , x ) can be approximated by reversion of the Airy-type asymptotic expansions of §§12.10(vii) and 12.10(viii). …
5: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley and J. Nayler (1935) A short table of the functions Ki n ( x ) , from n = 1 to n = 16 . Phil. Mag. Series 7 20, pp. 343–347.
  • S. Bochner and W. T. Martin (1948) Several Complex Variables. Princeton Mathematical Series, Vol. 10, Princeton University Press, Princeton, N.J..
  • 6: 22.3 Graphics
    §22.3(i) Real Variables: Line Graphs
    §22.3(ii) Real Variables: Surfaces
    §22.3(iii) Complex z ; Real k
    §22.3(iv) Complex k
    See accompanying text
    Figure 22.3.28: Density plot of | sn ( 20 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
    7: Bibliography C
  • J. Camacho, R. Guimerà, and L. A. N. Amaral (2002) Analytical solution of a model for complex food webs. Phys. Rev. E 65 (3), pp. (030901–1)–(030901–4).
  • D. V. Chudnovsky and G. V. Chudnovsky (1988) Approximations and Complex Multiplication According to Ramanujan. In Ramanujan Revisited (Urbana-Champaign, Ill., 1987), G. E. Andrews, R. A. Askey, B. C. Bernd, K. G. Ramanathan, and R. A. Rankin (Eds.), pp. 375–472.
  • W. J. Cody (1993a) Algorithm 714: CELEFUNT – A portable test package for complex elementary functions. ACM Trans. Math. Software 19 (1), pp. 1–21.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • E. T. Copson (1935) An Introduction to the Theory of Functions of a Complex Variable. Oxford University Press, Oxford.
  • 8: 28.35 Tables
    §28.35(i) Real Variables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • §28.35(ii) Complex Variables
    9: 9.7 Asymptotic Expansions
    Numerical values of χ ( n ) are given in Table 9.7.1 for n = 1 ( 1 ) 20 to 2D. …
    §9.7(iii) Error Bounds for Real Variables
    In (9.7.7) and (9.7.8) the n th error term is bounded in magnitude by the first neglected term multiplied by χ ( n + σ ) + 1 where σ = 1 6 for (9.7.7) and σ = 0 for (9.7.8), provided that n 0 in the first case and n 1 in the second case. …
    §9.7(iv) Error Bounds for Complex Variables
    provided that n 0 , σ = 1 6 for (9.7.5) and n 1 , σ = 0 for (9.7.6). …
    10: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1969) A Table of the Complete Elliptic Integral of the First Kind for Complex Values of the Modulus. Part I. Technical report Technical Report ARL 69-0172, Aerospace Research Laboratories, Office of Aerospace Research, Wright-Patterson Air Force Base, Ohio.
  • H. E. Fettis (1976) Complex roots of sin z = a z , cos z = a z , and cosh z = a z . Math. Comp. 30 (135), pp. 541–545.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.