# of periodic functions

(0.002 seconds)

## 1—10 of 67 matching pages

##### 1: 25.13 Periodic Zeta Function
###### §25.13 Periodic Zeta Function
The notation $F\left(x,s\right)$ is used for the polylogarithm $\mathrm{Li}_{s}\left(e^{2\pi ix}\right)$ with $x$ real: Also,
25.13.2 $F\left(x,s\right)=\frac{\Gamma\left(1-s\right)}{(2\pi)^{1-s}}\*\left(e^{\pi i(% 1-s)/2}\zeta\left(1-s,x\right)+e^{\pi i(s-1)/2}\zeta\left(1-s,1-x\right)\right),$ $0, $\Re s>1$,
##### 2: 27.10 Periodic Number-Theoretic Functions
###### §27.10 Periodic Number-Theoretic Functions
If $k$ is a fixed positive integer, then a number-theoretic function $f$ is periodic (mod $k$) if … Every function periodic (mod $k$) can be expressed as a finite Fourier series of the form …where $g(m)$ is also periodic (mod $k$), and is given by … is a periodic function of $n\pmod{k}$ and has the finite Fourier-series expansion …
##### 3: 25.1 Special Notation
 $k,m,n$ nonnegative integers. … periodic Bernoulli function $B_{n}\left(x-\left\lfloor x\right\rfloor\right)$. …
The main related functions are the Hurwitz zeta function $\zeta\left(s,a\right)$, the dilogarithm $\mathrm{Li}_{2}\left(z\right)$, the polylogarithm $\mathrm{Li}_{s}\left(z\right)$ (also known as Jonquière’s function $\phi\left(z,s\right)$), Lerch’s transcendent $\Phi\left(z,s,a\right)$, and the Dirichlet $L$-functions $L\left(s,\chi\right)$.
##### 4: 4.28 Definitions and Periodicity
###### Periodicity and Zeros
The functions $\sinh z$ and $\cosh z$ have period $2\pi i$, and $\tanh z$ has period $\pi i$. …
##### 6: 21.8 Abelian Functions
An Abelian function is a $2g$-fold periodic, meromorphic function of $g$ complex variables. …For every Abelian function, there is a positive integer $n$, such that the Abelian function can be expressed as a ratio of linear combinations of products with $n$ factors of Riemann theta functions with characteristics that share a common period lattice. …
##### 8: 29.19 Physical Applications
Simply-periodic Lamé functions ($\nu$ noninteger) can be used to solve boundary-value problems for Laplace’s equation in elliptical cones. …
##### 9: 28.30 Expansions in Series of Eigenfunctions
Then every continuous $2\pi$-periodic function $f(x)$ whose second derivative is square-integrable over the interval $[0,2\pi]$ can be expanded in a uniformly and absolutely convergent series …
##### 10: 22.4 Periods, Poles, and Zeros
###### §22.4(i) Distribution
For each Jacobian function, Table 22.4.1 gives its periods in the $z$-plane in the left column, and the position of one of its poles in the second row. … Table 22.4.2 displays the periods and zeros of the functions in the $z$-plane in a similar manner to Table 22.4.1. …