About the Project

of noninteger order

AdvancedHelp

(0.002 seconds)

7 matching pages

1: 28.12 Definitions and Basic Properties
§28.12(ii) Eigenfunctions me ν ( z , q )
For q = 0 , …
28.12.12 ce ν ( z , q ) = 1 2 ( me ν ( z , q ) + me ν ( z , q ) ) ,
28.12.13 se ν ( z , q ) = 1 2 i ( me ν ( z , q ) me ν ( z , q ) ) .
2: 10.74 Methods of Computation
In the case of J n ( x ) , the need for initial values can be avoided by application of Olver’s algorithm (§3.6(v)) in conjunction with Equation (10.12.4) used as a normalizing condition, or in the case of noninteger orders, (10.23.15). …
3: 10.15 Derivatives with Respect to Order
§10.15 Derivatives with Respect to Order
Noninteger Values of ν
4: Bibliography S
  • R. B. Shirts (1993a) The computation of eigenvalues and solutions of Mathieu’s differential equation for noninteger order. ACM Trans. Math. Software 19 (3), pp. 377–390.
  • R. B. Shirts (1993b) Algorithm 721: MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu’s differential equation for noninteger and integer order. ACM Trans. Math. Software 19 (3), pp. 391–406.
  • 5: 28.28 Integrals, Integral Representations, and Integral Equations
    §28.28(iii) Integrals of Products of Mathieu Functions of Noninteger Order
    6: 33.22 Particle Scattering and Atomic and Molecular Spectra
    The Coulomb functions given in this chapter are most commonly evaluated for real values of ρ , r , η , ϵ and nonnegative integer values of , but they may be continued analytically to complex arguments and order as indicated in §33.13. Examples of applications to noninteger and/or complex variables are as follows. …
    7: 13.9 Zeros
    When a < 0 and b > 0 let ϕ r , r = 1 , 2 , 3 , , be the positive zeros of M ( a , b , x ) arranged in increasing order of magnitude, and let j b 1 , r be the r th positive zero of the Bessel function J b 1 ( x ) 10.21(i)). …
    13.9.8 ϕ r = j b 1 , r 2 2 b 4 a ( 1 + 2 b ( b 2 ) + j b 1 , r 2 3 ( 2 b 4 a ) 2 ) + O ( 1 a 5 ) ,
    13.9.9 z = ± ( 2 n + a ) π i + ln ( Γ ( a ) Γ ( b a ) ( ± 2 n π i ) b 2 a ) + O ( n 1 ln n ) ,
    Let T ( a , b ) be the total number of zeros in the sector | ph z | < π , P ( a , b ) be the corresponding number of positive zeros, and a , b , and a b + 1 be nonintegers. …
    13.9.16 a = n 2 π z n 2 z π 2 + 1 2 b + 1 4 + z 2 ( 1 3 4 π 2 ) + z ( b 1 ) 2 + 1 4 4 π z n + O ( 1 n ) ,