About the Project
NIST

of matrix argument

AdvancedHelp

(0.002 seconds)

1—10 of 25 matching pages

1: 35.1 Special Notation
a , b complex variables.
f ( X ) complex-valued function with X Ω .
The main functions treated in this chapter are the multivariate gamma and beta functions, respectively Γ m ( a ) and B m ( a , b ) , and the special functions of matrix argument: Bessel (of the first kind) A ν ( T ) and (of the second kind) B ν ( T ) ; confluent hypergeometric (of the first kind) F 1 1 ( a ; b ; T ) or F 1 1 ( a b ; T ) and (of the second kind) Ψ ( a ; b ; T ) ; Gaussian hypergeometric F 1 2 ( a 1 , a 2 ; b ; T ) or F 1 2 ( a 1 , a 2 b ; T ) ; generalized hypergeometric F q p ( a 1 , , a p ; b 1 , , b q ; T ) or F q p ( a 1 , , a p b 1 , , b q ; T ) . … Related notations for the Bessel functions are 𝒥 ν + 1 2 ( m + 1 ) ( T ) = A ν ( T ) / A ν ( 0 ) (Faraut and Korányi (1994, pp. 320–329)), K m ( 0 , , 0 , ν | S , T ) = | T | ν B ν ( S T ) (Terras (1988, pp. 49–64)), and 𝒦 ν ( T ) = | T | ν B ν ( S T ) (Faraut and Korányi (1994, pp. 357–358)).
2: 35.5 Bessel Functions of Matrix Argument
§35.5 Bessel Functions of Matrix Argument
§35.5(i) Definitions
§35.5(ii) Properties
§35.5(iii) Asymptotic Approximations
For asymptotic approximations for Bessel functions of matrix argument, see Herz (1955) and Butler and Wood (2003).
3: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8(i) Definition
Convergence Properties
Confluence
Invariance
4: 35.6 Confluent Hypergeometric Functions of Matrix Argument
§35.6 Confluent Hypergeometric Functions of Matrix Argument
§35.6(i) Definitions
Laguerre Form
§35.6(ii) Properties
§35.6(iii) Relations to Bessel Functions of Matrix Argument
5: 35.7 Gaussian Hypergeometric Function of Matrix Argument
§35.7 Gaussian Hypergeometric Function of Matrix Argument
§35.7(i) Definition
Jacobi Form
Confluent Form
Integral Representation
6: 35.9 Applications
§35.9 Applications
In multivariate statistical analysis based on the multivariate normal distribution, the probability density functions of many random matrices are expressible in terms of generalized hypergeometric functions of matrix argument F q p , with p 2 and q 1 . See James (1964), Muirhead (1982), Takemura (1984), Farrell (1985), and Chikuse (2003) for extensive treatments. … These references all use results related to the integral formulas (35.4.7) and (35.5.8). … In chemistry, Wei and Eichinger (1993) expresses the probability density functions of macromolecules in terms of generalized hypergeometric functions of matrix argument, and develop asymptotic approximations for these density functions. …
7: 35.10 Methods of Computation
§35.10 Methods of Computation
See Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on O ( m ) applied to a generalization of the integral (35.5.8). …
8: 35 Functions of Matrix Argument
Chapter 35 Functions of Matrix Argument
9: 35.2 Laplace Transform
§35.2 Laplace Transform
Definition
where the integration variable X ranges over the space Ω . …
Inversion Formula
Convolution Theorem
10: Donald St. P. Richards
Richards has published numerous papers on special functions of matrix argument, harmonic analysis, multivariate statistical analysis, probability inequalities, and applied probability. …