About the Project
NIST

of arbitrary order

AdvancedHelp

(0.001 seconds)

1—10 of 47 matching pages

1: 16.8 Differential Equations
§16.8 Differential Equations
§16.8(i) Classification of Singularities
2: 11.2 Definitions
3: Bibliography L
  • S. K. Lucas and H. A. Stone (1995) Evaluating infinite integrals involving Bessel functions of arbitrary order. J. Comput. Appl. Math. 64 (3), pp. 217–231.
  • S. K. Lucas (1995) Evaluating infinite integrals involving products of Bessel functions of arbitrary order. J. Comput. Appl. Math. 64 (3), pp. 269–282.
  • 4: 3.2 Linear Algebra
    §3.2(iii) Condition of Linear Systems
    5: 2.9 Difference Equations
    For an introduction to, and references for, the general asymptotic theory of linear difference equations of arbitrary order, see Wimp (1984, Appendix B). …
    6: 1.13 Differential Equations
    For extensions of these results to linear homogeneous differential equations of arbitrary order see Spigler (1984). …
    7: 11.6 Asymptotic Expansions
    11.6.1 K ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν - 2 k - 1 Γ ( ν + 1 2 - k ) , | ph z | π - δ ,
    11.6.6 K ν ( λ ν ) ( 1 2 λ ν ) ν - 1 π Γ ( ν + 1 2 ) k = 0 k ! c k ( λ ) ν k , | ph ν | 1 2 π - δ ,
    8: Bibliography S
  • A. Sidi (1997) Computation of infinite integrals involving Bessel functions of arbitrary order by the D ¯ -transformation. J. Comput. Appl. Math. 78 (1), pp. 125–130.
  • 9: 2.7 Differential Equations
    For corresponding definitions, together with examples, for linear differential equations of arbitrary order see §§16.8(i)16.8(ii). …
    10: 11.9 Lommel Functions