About the Project

odd part

AdvancedHelp

(0.001 seconds)

11—18 of 18 matching pages

11: 36.8 Convergent Series Expansions
Ψ K ( 𝐱 ) = 2 K + 2 n = 0 i n cos ( π ( n ( K + 1 ) 1 ) 2 ( K + 2 ) ) Γ ( n + 1 K + 2 ) a n ( 𝐱 ) , K odd,
36.8.4 Ψ ( E ) ( 𝐱 ) = 2 π 2 ( 2 3 ) 2 / 3 n = 0 ( i ( 2 / 3 ) 2 / 3 z ) n n ! ( f n ( x + i y 12 1 / 3 , x i y 12 1 / 3 ) ) ,
12: 19.2 Definitions
Let s 2 ( t ) be a cubic or quartic polynomial in t with simple zeros, and let r ( s , t ) be a rational function of s and t containing at least one odd power of s . …Thus the elliptic part of (19.2.1) is …
13: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
We integrate by parts twice giving: … Other applications follow from the fact that is suitable for describing vibrations, especially standing waves, which arise in many parts of engineering and the physical sciences, see Birkhoff and Rota (1989, §§10.3 and 10.16). … For f ( x ) even in x this yields the Fourier cosine transform pair (1.14.9) & (1.14.11), and for f ( x ) odd the Fourier sine transform pair (1.14.10) & (1.14.12). … Note that the notations of (1.18.32) and (1.18.47) are used to distinguish the contributions from the discrete and continuous parts of the spectrum. … Then dim N z is constant for z > 0 and also constant for z < 0 . …
14: 36.2 Catastrophes and Canonical Integrals
36.2.15 Ψ K ( 𝟎 ) = 2 K + 2 Γ ( 1 K + 2 ) { exp ( i π 2 ( K + 2 ) ) , K  even, cos ( π 2 ( K + 2 ) ) , K  odd .
p x 1 p Ψ K ( 𝟎 ) = 2 K + 2 Γ ( p + 1 K + 2 ) cos ( π 2 ( p + 1 K + 2 + p ) ) , K odd,
36.2.20 Ψ ( E ) ( x , y , 0 ) = 2 π 2 ( 2 3 ) 2 / 3 ( Ai ( x + i y 12 1 / 3 ) Bi ( x i y 12 1 / 3 ) ) ,
15: 28.29 Definitions and Basic Properties
28.29.6 1 < ν 1
In the symmetric case Q ( z ) = Q ( z ) , w I ( z , λ ) is an even solution and w II ( z , λ ) is an odd solution; compare §28.2(ii). …
16: 5.4 Special Values and Extrema
5.4.2 n !! = { 2 1 2 n Γ ( 1 2 n + 1 ) , n  even , π 1 2 2 1 2 n + 1 2 Γ ( 1 2 n + 1 ) , n  odd .
5.4.16 ψ ( i y ) = 1 2 y + π 2 coth ( π y ) ,
5.4.18 ψ ( 1 + i y ) = 1 2 y + π 2 coth ( π y ) .
17: 12.14 The Function W ( a , x )
12.14.8 W ( a , x ) = W ( a , 0 ) w 1 ( a , x ) + W ( a , 0 ) w 2 ( a , x ) .
Here w 1 ( a , x ) and w 2 ( a , x ) are the even and odd solutions of (12.2.3): …
12.14.10 w 2 ( a , x ) = n = 0 β n ( a ) x 2 n + 1 ( 2 n + 1 ) ! ,
The even and odd solutions of (12.2.3) (see §12.14(v)) are given by … The coefficients c 2 r and d 2 r are obtainable by equating real and imaginary parts in …
18: 30.11 Radial Spheroidal Wave Functions
30.11.6 S n m ( j ) ( z , γ ) = { ψ n ( j ) ( γ z ) + O ( z 2 e | z | ) , j = 1 , 2 , ψ n ( j ) ( γ z ) ( 1 + O ( z 1 ) ) , j = 3 , 4 .
30.11.11 K n m ( γ ) = π 2 ( γ 2 ) m + 1 ( 1 ) m a n , 1 2 ( m n + 1 ) m ( γ 2 ) Γ ( 5 2 + m ) A n m ( γ 2 ) ( d 𝖯𝗌 n m ( z , γ 2 ) / d z | z = 0 ) , n m odd.