About the Project

numerical%20solutions

AdvancedHelp

(0.002 seconds)

1—10 of 18 matching pages

1: 3.8 Nonlinear Equations
§3.8 Nonlinear Equations
Because the method requires only one function evaluation per iteration, its numerical efficiency is ultimately higher than that of Newton’s method. … Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . … Corresponding numerical factors in this example for other zeros and other values of j are obtained in Gautschi (1984, §4). …
2: Bibliography G
  • W. Gautschi (1984) Questions of Numerical Condition Related to Polynomials. In Studies in Numerical Analysis, G. H. Golub (Ed.), pp. 140–177.
  • A. Gil, J. Segura, and N. M. Temme (2002c) Computing complex Airy functions by numerical quadrature. Numer. Algorithms 30 (1), pp. 11–23.
  • A. Gil, J. Segura, and N. M. Temme (2007b) Numerically satisfactory solutions of hypergeometric recursions. Math. Comp. 76 (259), pp. 1449–1468.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • A. Gil and J. Segura (2003) Computing the zeros and turning points of solutions of second order homogeneous linear ODEs. SIAM J. Numer. Anal. 41 (3), pp. 827–855.
  • 3: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • J. D. Secada (1999) Numerical evaluation of the Hankel transform. Comput. Phys. Comm. 116 (2-3), pp. 278–294.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • B. Sommer and J. G. Zabolitzky (1979) On numerical Bessel transformation. Comput. Phys. Comm. 16 (3), pp. 383–387.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 4: 27.15 Chinese Remainder Theorem
    The Chinese remainder theorem states that a system of congruences x a 1 ( mod m 1 ) , , x a k ( mod m k ) , always has a solution if the moduli are relatively prime in pairs; the solution is unique (mod m ), where m is the product of the moduli. … Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. … Details of a machine program describing the method together with typical numerical results can be found in Newman (1967). …
    5: Bibliography K
  • D. K. Kahaner, C. Moler, and S. Nash (1989) Numerical Methods and Software. Prentice Hall, Englewood Cliffs, N.J..
  • A. V. Kashevarov (1998) The second Painlevé equation in electric probe theory. Some numerical solutions. Zh. Vychisl. Mat. Mat. Fiz. 38 (6), pp. 992–1000 (Russian).
  • A. V. Kashevarov (2004) The second Painlevé equation in the electrostatic probe theory: Numerical solutions for the partial absorption of charged particles by the surface. Technical Physics 49 (1), pp. 1–7.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • K. S. Kölbig, J. A. Mignaco, and E. Remiddi (1970) On Nielsen’s generalized polylogarithms and their numerical calculation. Nordisk Tidskr. Informationsbehandling (BIT) 10, pp. 38–73.
  • 6: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1998) On the asymptotic and numerical solution of linear ordinary differential equations. SIAM Rev. 40 (3), pp. 463–495.
  • F. W. J. Olver and F. Stenger (1965) Error bounds for asymptotic solutions of second-order differential equations having an irregular singularity of arbitrary rank. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (2), pp. 244–249.
  • F. W. J. Olver (1965) On the asymptotic solution of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker functions. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (2), pp. 225–243.
  • F. W. J. Olver (1967a) Numerical solution of second-order linear difference equations. J. Res. Nat. Bur. Standards Sect. B 71B, pp. 111–129.
  • S. Olver (2011) Numerical solution of Riemann-Hilbert problems: Painlevé II. Found. Comput. Math. 11 (2), pp. 153–179.
  • 7: Bibliography L
  • W. Lay, K. Bay, and S. Yu. Slavyanov (1998) Asymptotic and numeric study of eigenvalues of the double confluent Heun equation. J. Phys. A 31 (42), pp. 8521–8531.
  • D. K. Lee (1990) Application of theta functions for numerical evaluation of complete elliptic integrals of the first and second kinds. Comput. Phys. Comm. 60 (3), pp. 319–327.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • J. L. López and N. M. Temme (2010a) Asymptotics and numerics of polynomials used in Tricomi and Buchholz expansions of Kummer functions. Numer. Math. 116 (2), pp. 269–289.
  • D. W. Lozier (1980) Numerical Solution of Linear Difference Equations. NBSIR Technical Report 80-1976, National Bureau of Standards, Gaithersburg, MD 20899.
  • 8: Bibliography V
  • H. Volkmer (1984) Integral representations for products of Lamé functions by use of fundamental solutions. SIAM J. Math. Anal. 15 (3), pp. 559–569.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • A. P. Vorob’ev (1965) On the rational solutions of the second Painlevé equation. Differ. Uravn. 1 (1), pp. 79–81 (Russian).
  • M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos, and T. N. Grapsa (1995) RFSFNS: A portable package for the numerical determination of the number and the calculation of roots of Bessel functions. Comput. Phys. Comm. 92 (2-3), pp. 252–266.
  • M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos, and T. N. Grapsa (1997b) The topological degree theory for the localization and computation of complex zeros of Bessel functions. Numer. Funct. Anal. Optim. 18 (1-2), pp. 227–234.
  • 9: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • W. Bartky (1938) Numerical calculation of a generalized complete elliptic integral. Rev. Mod. Phys. 10, pp. 264–269.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • Å. Björck (1996) Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • G. Blanch (1964) Numerical evaluation of continued fractions. SIAM Rev. 6 (4), pp. 383–421.
  • 10: Bibliography N
  • A. Natarajan and N. Mohankumar (1993) On the numerical evaluation of the generalised Fermi-Dirac integrals. Comput. Phys. Comm. 76 (1), pp. 48–50.
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • Y. Nievergelt (1995) Bisection hardly ever converges linearly. Numer. Math. 70 (1), pp. 111–118.