About the Project

nonlinear%20evolution%20equations

AdvancedHelp

(0.003 seconds)

1—10 of 500 matching pages

1: 15.10 Hypergeometric Differential Equation
§15.10 Hypergeometric Differential Equation
§15.10(i) Fundamental Solutions
This is the hypergeometric differential equation. … The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
2: 30.2 Differential Equations
§30.2 Differential Equations
§30.2(i) Spheroidal Differential Equation
The Liouville normal form of equation (30.2.1) is …
§30.2(iii) Special Cases
3: 31.2 Differential Equations
§31.2 Differential Equations
§31.2(i) Heun’s Equation
§31.2(ii) Normal Form of Heun’s Equation
§31.2(v) Heun’s Equation Automorphisms
Composite Transformations
4: 29.2 Differential Equations
§29.2 Differential Equations
§29.2(i) Lamé’s Equation
§29.2(ii) Other Forms
Equation (29.2.10) is a special case of Heun’s equation (31.2.1).
5: 32.2 Differential Equations
§32.2 Differential Equations
The six Painlevé equations P I P VI  are as follows: … be a nonlinear second-order differential equation in which F is a rational function of w and d w / d z , and is locally analytic in z , that is, analytic except for isolated singularities in . … When β = 0 this is a nonlinear harmonic oscillator. …
6: 28.2 Definitions and Basic Properties
§28.2(i) Mathieu’s Equation
This is the characteristic equation of Mathieu’s equation (28.2.1). …
§28.2(iv) Floquet Solutions
7: 28.20 Definitions and Basic Properties
§28.20(i) Modified Mathieu’s Equation
When z is replaced by ± i z , (28.2.1) becomes the modified Mathieu’s equation:
28.20.1 w ′′ ( a 2 q cosh ( 2 z ) ) w = 0 ,
28.20.2 ( ζ 2 1 ) w ′′ + ζ w + ( 4 q ζ 2 2 q a ) w = 0 , ζ = cosh z .
Then from §2.7(ii) it is seen that equation (28.20.2) has independent and unique solutions that are asymptotic to ζ 1 / 2 e ± 2 i h ζ as ζ in the respective sectors | ph ( i ζ ) | 3 2 π δ , δ being an arbitrary small positive constant. …
8: Peter A. Clarkson
Clarkson has published numerous papers on integrable systems (primarily Painlevé equations), special functions, and symmetry methods for differential equations. … Kruskal, he developed the “direct method” for determining symmetry solutions of partial differential equations in New similarity reductions of the Boussinesq equation (with M. …His well-known book Solitons, Nonlinear Evolution Equations and Inverse Scattering (with M. …He is also coauthor of the book From Nonlinearity to Coherence: Universal Features of Nonlinear Behaviour in Many-Body Physics (with J. …
9: Mark J. Ablowitz
Ablowitz is an applied mathematician who is interested in solutions of nonlinear wave equations. Certain nonlinear equations are special; e. …ODEs with the Painlevé property contain the well-known Painlevé equations which are special second order scalar equations; their solutions are often called Painlevé transcendents. Some of the relationships between IST and Painlevé equations are discussed in two books: Solitons and the Inverse Scattering Transform and Solitons, Nonlinear Evolution Equations and Inverse Scattering. Widespread interest in Painlevé equations re-emerged in the 1970s and thereafter partially due to the connection with IST and integrable systems. …
10: 29.19 Physical Applications
§29.19(ii) Lamé Polynomials
Ward (1987) computes finite-gap potentials associated with the periodic Korteweg–de Vries equation. …Hargrave (1978) studies high frequency solutions of the delta wing equation. …Roper (1951) solves the linearized supersonic flow equations. Clarkson (1991) solves nonlinear evolution equations. …