About the Project

ninej symbols

AdvancedHelp

(0.001 seconds)

1—10 of 15 matching pages

1: 34.6 Definition: 9 j Symbol
§34.6 Definition: 9 j Symbol
The 9 j symbol may be defined either in terms of 3 j symbols or equivalently in terms of 6 j symbols:
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
The 9 j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: 34.12 Physical Applications
§34.12 Physical Applications
The angular momentum coupling coefficients ( 3 j , 6 j , and 9 j symbols) are essential in the fields of nuclear, atomic, and molecular physics. … 3 j , 6 j , and 9 j symbols are also found in multipole expansions of solutions of the Laplace and Helmholtz equations; see Carlson and Rushbrooke (1950) and Judd (1976).
3: 34.14 Tables
§34.14 Tables
Tables of exact values of the squares of the 3 j and 6 j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 j , 6 j , and 9 j symbols on pp. … Some selected 9 j symbols are also given. … 16-17; for 9 j symbols on p. …  310–332, and for the 9 j symbols on pp. …
4: 34.13 Methods of Computation
Methods of computation for 3 j and 6 j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 97–99); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). For 9 j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). …
5: 34.10 Zeros
Such zeros are called nontrivial zeros. For further information, including examples of nontrivial zeros and extensions to 9 j symbols, see Srinivasa Rao and Rajeswari (1993, pp. 133–215, 294–295, 299–310).
6: 34.9 Graphical Method
§34.9 Graphical Method
For specific examples of the graphical method of representing sums involving the 3 j , 6 j , and 9 j symbols, see Varshalovich et al. (1988, Chapters 11, 12) and Lehman and O’Connell (1973, §3.3).
7: 34.7 Basic Properties: 9 j Symbol
§34.7 Basic Properties: 9 j Symbol
§34.7(ii) Symmetry
§34.7(iv) Orthogonality
§34.7(vi) Sums
It constitutes an addition theorem for the 9 j symbol. …
8: 16.24 Physical Applications
§16.24(iii) 3 j , 6 j , and 9 j Symbols
Lastly, special cases of the 9 j symbols are F 4 5 functions with unit argument. …
9: 34.1 Special Notation
2 j 1 , 2 j 2 , 2 j 3 , 2 l 1 , 2 l 2 , 2 l 3 nonnegative integers.
The main functions treated in this chapter are the Wigner 3 j , 6 j , 9 j symbols, respectively, … For other notations for 3 j , 6 j , 9 j symbols, see Edmonds (1974, pp. 52, 97, 104–105) and Varshalovich et al. (1988, §§8.11, 9.10, 10.10).
10: 34.8 Approximations for Large Parameters
§34.8 Approximations for Large Parameters
For large values of the parameters in the 3 j , 6 j , and 9 j symbols, different asymptotic forms are obtained depending on which parameters are large. … For approximations for the 3 j , 6 j , and 9 j symbols with error bounds see Flude (1998), Chen et al. (1999), and Watson (1999): these references also cite earlier work.