About the Project

mutual inductance of coaxial circles

AdvancedHelp

(0.003 seconds)

11—20 of 412 matching pages

11: 18.30 Associated OP’s
18.30.14 H n ( x ; c ) H m ( x ; c ) w ( x , c ) d x = 2 n π 1 / 2 Γ ( n + c + 1 ) δ n , m , c > 1 ,
18.30.17 𝒫 n λ ( x ; ϕ , c ) 𝒫 m λ ( x ; ϕ , c ) w ( λ ) ( x , ϕ , c ) d x = Γ ( n + c + 2 λ ) Γ ( c + 1 ) ( c + 1 ) n δ n , m , 0 < ϕ < π , c + 2 λ > 0 , c 0 or 0 < ϕ < π , c + 2 λ 1 , c > 1 ,
18.30.20 H n ( x ; c ) = ( c + 1 ) n lim λ λ n / 2 𝒫 n λ ( x λ 1 / 2 ; π / 2 , c ) .
follows by induction on n . …
12: 17.2 Calculus
17.2.6_1 ( q ; q ) = 2 π t exp ( π 2 6 t + t 24 ) ( q ^ ; q ^ ) , t > 0 ,
17.2.6_2 ( q ; q ) = 1 2 exp ( π 2 12 t + t 24 ) ( q ^ 1 2 ; q ^ ) , t > 0 .
13: Bibliography R
  • A. Russell (1909) The effective resistance and inductance of a concentric main, and methods of computing the ber and bei and allied functions. Philos. Mag. (6) 17, pp. 524–552.
  • 14: 10.73 Physical Applications
    Consequently, Bessel functions J n ( x ) , and modified Bessel functions I n ( x ) , are central to the analysis of microwave and optical transmission in waveguides, including coaxial and fiber. …
    15: 15.5 Derivatives and Contiguous Functions
    16: 4.22 Infinite Products and Partial Fractions
    4.22.1 sin z = z n = 1 ( 1 z 2 n 2 π 2 ) ,
    4.22.2 cos z = n = 1 ( 1 4 z 2 ( 2 n 1 ) 2 π 2 ) .
    4.22.3 cot z = 1 z + 2 z n = 1 1 z 2 n 2 π 2 ,
    4.22.4 csc 2 z = n = 1 ( z n π ) 2 ,
    4.22.5 csc z = 1 z + 2 z n = 1 ( 1 ) n z 2 n 2 π 2 .
    17: 4.36 Infinite Products and Partial Fractions
    4.36.1 sinh z = z n = 1 ( 1 + z 2 n 2 π 2 ) ,
    4.36.2 cosh z = n = 1 ( 1 + 4 z 2 ( 2 n 1 ) 2 π 2 ) .
    4.36.3 coth z = 1 z + 2 z n = 1 1 z 2 + n 2 π 2 ,
    4.36.4 csch 2 z = n = 1 ( z n π i ) 2 ,
    4.36.5 csch z = 1 z + 2 z n = 1 ( 1 ) n z 2 + n 2 π 2 .
    18: 3.12 Mathematical Constants
    3.12.1 π = 3.14159 26535 89793 23846
    3.12.2 π = 4 0 1 d t 1 + t 2 .
    19: 6.15 Sums
    6.15.2 n = 1 si ( π n ) n = 1 2 π ( ln π 1 ) ,
    6.15.3 n = 1 ( 1 ) n Ci ( 2 π n ) = 1 ln 2 1 2 γ ,
    6.15.4 n = 1 ( 1 ) n si ( 2 π n ) n = π ( 3 2 ln 2 1 ) .
    20: 28.3 Graphics