About the Project

multivariate hypergeometric function

AdvancedHelp

(0.003 seconds)

1—10 of 26 matching pages

1: 19.15 Advantages of Symmetry
Elliptic integrals are special cases of a particular multivariate hypergeometric function called Lauricella’s F D (Carlson (1961b)). …
2: 19.16 Definitions
§19.16(ii) R a ( 𝐛 ; 𝐳 )
All elliptic integrals of the form (19.2.3) and many multiple integrals, including (19.23.6) and (19.23.6_5), are special cases of a multivariate hypergeometric function
19.16.8 R a ( 𝐛 ; 𝐳 ) = R a ( b 1 , , b n ; z 1 , , z n ) ,
3: Bille C. Carlson
In his paper Lauricella’s hypergeometric function F D (1963), he defined the R -function, a multivariate hypergeometric function that is homogeneous in its variables, each variable being paired with a parameter. …
4: 19.19 Taylor and Related Series
19.19.2 R a ( 𝐛 ; 𝐳 ) = N = 0 ( a ) N ( c ) N T N ( 𝐛 , 𝟏 𝐳 ) , c = j = 1 n b j , | 1 z j | < 1 ,
19.19.3 R a ( 𝐛 ; 𝐳 ) = z n a N = 0 ( a ) N ( c ) N T N ( b 1 , , b n 1 ; 1 ( z 1 / z n ) , , 1 ( z n 1 / z n ) ) , c = j = 1 n b j , | 1 ( z j / z n ) | < 1 .
19.19.6 R J ( x , y , z , p ) = R 3 2 ( 1 2 , 1 2 , 1 2 , 1 2 , 1 2 ; x , y , z , p , p )
5: 35.1 Special Notation
a , b complex variables.
The main functions treated in this chapter are the multivariate gamma and beta functions, respectively Γ m ( a ) and B m ( a , b ) , and the special functions of matrix argument: Bessel (of the first kind) A ν ( 𝐓 ) and (of the second kind) B ν ( 𝐓 ) ; confluent hypergeometric (of the first kind) F 1 1 ( a ; b ; 𝐓 ) or F 1 1 ( a b ; 𝐓 ) and (of the second kind) Ψ ( a ; b ; 𝐓 ) ; Gaussian hypergeometric F 1 2 ( a 1 , a 2 ; b ; 𝐓 ) or F 1 2 ( a 1 , a 2 b ; 𝐓 ) ; generalized hypergeometric F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) or F q p ( a 1 , , a p b 1 , , b q ; 𝐓 ) . … Related notations for the Bessel functions are 𝒥 ν + 1 2 ( m + 1 ) ( 𝐓 ) = A ν ( 𝐓 ) / A ν ( 𝟎 ) (Faraut and Korányi (1994, pp. 320–329)), K m ( 0 , , 0 , ν | 𝐒 , 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Terras (1988, pp. 49–64)), and 𝒦 ν ( 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Faraut and Korányi (1994, pp. 357–358)).
6: 19.31 Probability Distributions
19.31.2 n ( 𝐱 T 𝐀 𝐱 ) μ exp ( 𝐱 T 𝐁 𝐱 ) d x 1 d x n = π n / 2 Γ ( μ + 1 2 n ) det 𝐁 Γ ( 1 2 n ) R μ ( 1 2 , , 1 2 ; λ 1 , , λ n ) , μ > 1 2 n .
7: 19.1 Special Notation
R a ( b 1 , b 2 , , b n ; z 1 , z 2 , , z n ) is a multivariate hypergeometric function that includes all the functions in (19.1.3). …
8: 19.23 Integral Representations
19.23.8 R a ( 𝐛 ; 𝐳 ) = 2 B ( b 1 , b 2 ) 0 π / 2 ( z 1 cos 2 θ + z 2 sin 2 θ ) a ( cos θ ) 2 b 1 1 ( sin θ ) 2 b 2 1 d θ , b 1 , b 2 > 0 ; z 1 , z 2 > 0 .
19.23.9 R a ( 𝐛 ; 𝐳 ) = 4 Γ ( b 1 + b 2 + b 3 ) Γ ( b 1 ) Γ ( b 2 ) Γ ( b 3 ) 0 π / 2 0 π / 2 ( j = 1 3 z j l j 2 ) a j = 1 3 l j 2 b j 1 sin θ d θ d ϕ , b j > 0 , z j > 0 .
19.23.10 R a ( 𝐛 ; 𝐳 ) = 1 B ( a , a ) 0 1 u a 1 ( 1 u ) a 1 j = 1 n ( 1 u + u z j ) b j d u , a , a > 0 ; a + a = j = 1 n b j ; z j ( , 0 ] .
9: 19.18 Derivatives and Differential Equations
19.18.4 j R a ( 𝐛 ; 𝐳 ) = a w j R a 1 ( 𝐛 + 𝐞 j ; 𝐳 ) ,
19.18.5 ( z j j + b j ) R a ( 𝐛 ; 𝐳 ) = w j a R a ( 𝐛 + 𝐞 j ; 𝐳 ) .
19.18.8 j = 1 n j R a ( 𝐛 ; 𝐳 ) = a R a 1 ( 𝐛 ; 𝐳 ) .
10: 19.34 Mutual Inductance of Coaxial Circles
19.34.7 M = ( 2 / c 2 ) ( π a 2 ) ( π b 2 ) R 3 2 ( 3 2 , 3 2 ; r + 2 , r 2 ) .