About the Project

multiplicity

AdvancedHelp

(0.001 seconds)

11—20 of 91 matching pages

11: 31.6 Path-Multiplicative Solutions
§31.6 Path-Multiplicative Solutions
A further extension of the notation (31.4.1) and (31.4.3) is given by …These solutions are called path-multiplicative. …
12: 17.12 Bailey Pairs
( a q ρ 1 , a q ρ 2 ; q ) n α n = ( ρ 1 , ρ 2 ; q ) n ( a q ρ 1 ρ 2 ) n α n
( a q ρ 1 , a q ρ 2 ; q ) n β n = j = 0 n ( ρ 1 , ρ 2 ; q ) j ( a q ρ 1 ρ 2 ; q ) n j ( a q ρ 1 ρ 2 ) j β j ( q ; q ) n j
13: 18.28 Askey–Wilson Class
18.28.1 p n ( x ) = p n ( x ; a , b , c , d | q ) = a n = 0 n q ( a b q , a c q , a d q ; q ) n ( q n , a b c d q n 1 ; q ) ( q ; q ) j = 0 1 ( 1 2 a q j x + a 2 q 2 j ) ,
18.28.4 h 0 = ( a b c d ; q ) ( q , a b , a c , a d , b c , b d , c d ; q ) ,
18.28.5 h n = h 0 ( 1 a b c d q n 1 ) ( q , a b , a c , a d , b c , b d , c d ; q ) n ( 1 a b c d q 2 n 1 ) ( a b c d ; q ) n , n = 1 , 2 , .
18.28.21 ω y = ( α q , β δ q , γ q , γ δ q ; q ) y ( q , γ δ α q , γ β q , δ q ; q ) y 1 γ δ q 2 y + 1 ( α β q ) y ,
18.28.22 h n = ( α β ) n + 1 q ( n + 1 ) 2 α β q 2 n + 1 1 ( q ; q ) n ( α q , β δ q , γ q ; q ) n ( γ α β q n , δ α q n , 1 β q n , γ δ q ; q ) ( 1 α β q n , γ δ α q , γ β q , δ q ; q ) .
14: 27.4 Euler Products and Dirichlet Series
Every multiplicative f satisfies the identity …If f ( n ) is completely multiplicative, then each factor in the product is a geometric series and the Euler product becomes … Euler products are used to find series that generate many functions of multiplicative number theory. The completely multiplicative function f ( n ) = n s gives the Euler product representation of the Riemann zeta function ζ ( s ) 25.2(i)): …
27.4.4 F ( s ) = n = 1 f ( n ) n s ,
15: 17.2 Calculus
17.2.6 ( a 1 , a 2 , , a r ; q ) = j = 1 r ( a j ; q ) .
17.2.22 ( q a 1 2 , q a 1 2 ; q ) n ( a 1 2 , a 1 2 ; q ) n = ( a q 2 ; q 2 ) n ( a ; q 2 ) n = 1 a q 2 n 1 a ,
16: 18.27 q -Hahn Class
18.27.9 v x = ( a 1 x , c 1 x ; q ) ( x , b c 1 x ; q ) , 0 < a < q 1 , 0 < b < q 1 , c < 0 ,
18.27.9_5 h n = ( c ) n a n + 1 1 a b q 2 n + 1 ( q ; q ) n q ( n + 2 2 ) ( a q , c q ; q ) n ( q , c 1 a q , a 1 c , a b q n + 1 ; q ) ( a q , c q , b q n + 1 , c 1 a b q n + 1 ; q ) ,
18.27.12 v x = ( q x / c , q x / d ; q ) ( q α + 1 x / c , q β + 1 x / d ; q ) , α , β > 1 , c , d > 0 .
18.27.14_1 h n = ( a q ) n 1 a b q 2 n + 1 ( q , b q ; q ) n ( a q ; q ) n ( a b q n + 1 ; q ) ( a q ; q ) .
18.27.17_2 h 0 ( 2 ) = ( q , c q α + 1 , c 1 q α ; q ) ( q α + 1 , c , c 1 q ; q ) .
17: 5.5 Functional Relations
§5.5(iii) Multiplication
Gauss’s Multiplication Formula
5.5.7 k = 1 n 1 Γ ( k n ) = ( 2 π ) ( n 1 ) / 2 n 1 / 2 .
18: 27.1 Special Notation
§27.1 Special Notation
d , k , m , n positive integers (unless otherwise indicated).
19: 24.12 Zeros
§24.12(iv) Multiple Zeros
B n ( x ) , n = 1 , 2 , , has no multiple zeros. The only polynomial E n ( x ) with multiple zeros is E 5 ( x ) = ( x 1 2 ) ( x 2 x 1 ) 2 .
20: 35.10 Methods of Computation
Other methods include numerical quadrature applied to double and multiple integral representations. …