About the Project

multiplicative functions

AdvancedHelp

(0.005 seconds)

1—10 of 85 matching pages

1: 27.3 Multiplicative Properties
§27.3 Multiplicative Properties
Except for ν ( n ) , Λ ( n ) , p n , and π ( x ) , the functions in §27.2 are multiplicative, which means f ( 1 ) = 1 and
27.3.1 f ( m n ) = f ( m ) f ( n ) , ( m , n ) = 1 .
27.3.8 ϕ ( m ) ϕ ( n ) = ϕ ( m n ) ϕ ( ( m , n ) ) / ( m , n ) .
A function f is completely multiplicative if f ( 1 ) = 1 and …
2: 27.20 Methods of Computation: Other Number-Theoretic Functions
To calculate a multiplicative function it suffices to determine its values at the prime powers and then use (27.3.2). For a completely multiplicative function we use the values at the primes together with (27.3.10). …
3: 27.4 Euler Products and Dirichlet Series
Every multiplicative f satisfies the identity …
27.4.2 n = 1 f ( n ) = p ( 1 f ( p ) ) 1 .
Euler products are used to find series that generate many functions of multiplicative number theory. The completely multiplicative function f ( n ) = n s gives the Euler product representation of the Riemann zeta function ζ ( s ) 25.2(i)): …
27.4.4 F ( s ) = n = 1 f ( n ) n s ,
4: 5.5 Functional Relations
§5.5(iii) Multiplication
Gauss’s Multiplication Formula
5.5.7 k = 1 n 1 Γ ( k n ) = ( 2 π ) ( n 1 ) / 2 n 1 / 2 .
5: 10.44 Sums
§10.44(i) Multiplication Theorem
6: 17.8 Special Cases of ψ r r Functions
17.8.4 ψ 2 2 ( b , c ; a q / b , a q / c ; q , a q / ( b c ) ) = ( a q / ( b c ) ; q ) ( a q 2 / b 2 , a q 2 / c 2 , q 2 , a q , q / a ; q 2 ) ( a q / b , a q / c , q / b , q / c , a q / ( b c ) ; q ) ,
17.8.5 ψ 3 3 ( b , c , d q / b , q / c , q / d ; q , q b c d ) = ( q , q / ( b c ) , q / ( b d ) , q / ( c d ) ; q ) ( q / b , q / c , q / d , q / ( b c d ) ; q ) ,
17.8.6 ψ 4 4 ( q a 1 2 , b , c , d a 1 2 , a q / b , a q / c , a q / d ; q , q a 3 2 b c d ) = ( a q , a q / ( b c ) , a q / ( b d ) , a q / ( c d ) , q a 1 2 / b , q a 1 2 / c , q a 1 2 / d , q , q / a ; q ) ( a q / b , a q / c , a q / d , q / b , q / c , q / d , q a 1 2 , q a 1 2 , q a 3 2 / ( b c d ) ; q ) ,
17.8.7 ψ 6 6 ( q a 1 2 , q a 1 2 , b , c , d , e a 1 2 , a 1 2 , a q / b , a q / c , a q / d , a q / e ; q , q a 2 b c d e ) = ( a q , a q / ( b c ) , a q / ( b d ) , a q / ( b e ) , a q / ( c d ) , a q / ( c e ) , a q / ( d e ) , q , q / a ; q ) ( a q / b , a q / c , a q / d , a q / e , q / b , q / c , q / d , q / e , q a 2 / ( b c d e ) ; q ) .
7: 17.10 Transformations of ψ r r Functions
17.10.1 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , d / a , c / b , d q / ( a b z ) ; q ) ( z , d , q / b , c d / ( a b z ) ; q ) ψ 2 2 ( a , a b z / d a z , c ; q , d a ) ,
17.10.2 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , b z , c q / ( a b z ) , d q / ( a b z ) ; q ) ( q / a , q / b , c , d ; q ) ψ 2 2 ( a b z / c , a b z / d a z , b z ; q , c d a b z ) .
17.10.3 ψ 8 8 ( q a 1 2 , q a 1 2 , c , d , e , f , a q n , q n a 1 2 , a 1 2 , a q / c , a q / d , a q / e , a q / f , q n + 1 , a q n + 1 ; q , a 2 q 2 n + 2 c d e f ) = ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n ( q / c , q / d , a q / e , a q / f ; q ) n ψ 4 4 ( e , f , a q n + 1 / ( c d ) , q n a q / c , a q / d , q n + 1 , e f / ( a q n ) ; q , q ) ,
17.10.4 ψ 2 2 ( e , f a q / c , a q / d ; q , a q e f ) = ( q / c , q / d , a q / e , a q / f ; q ) ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n = ( 1 a q 2 n ) ( c , d , e , f ; q ) n ( 1 a ) ( a q / c , a q / d , a q / e , a q / f ; q ) n ( q a 3 c d e f ) n q n 2 .
17.10.5 ( a q / b , a q / c , a q / d , a q / e , q / ( a b ) , q / ( a c ) , q / ( a d ) , q / ( a e ) ; q ) ( f a , g a , f / a , g / a , q a 2 , q / a 2 ; q ) ψ 8 8 ( q a , q a , b a , c a , d a , e a , f a , g a a , a , a q / b , a q / c , a q / d , a q / e , a q / f , a q / g ; q , q 2 b c d e f g ) = ( q , q / ( b f ) , q / ( c f ) , q / ( d f ) , q / ( e f ) , q f / b , q f / c , q f / d , q f / e ; q ) ( f a , q / ( f a ) , a q / f , f / a , g / f , f g , q f 2 ; q ) ϕ 7 8 ( f 2 , q f , q f , f b , f c , f d , f e , f g f , f , f q / b , f q / c , f q / d , f q / e , f q / g ; q , q 2 b c d e f g ) + idem ( f ; g ) .
8: 17.7 Special Cases of Higher ϕ s r Functions
17.7.1 ϕ 2 2 ( a , q / a q , b ; q , b ) = ( a b , b q / a ; q 2 ) ( b ; q ) .
17.7.2 ϕ 2 2 ( a 2 , b 2 a b q 1 2 , a b q 1 2 ; q , q ) = ( a 2 q , b 2 q ; q 2 ) ( q , a 2 b 2 q ; q 2 ) .
17.7.12 ϕ 3 4 ( a , a q , b 2 q 2 n , q 2 n b , b q , a 2 q 2 ; q 2 , q 2 ) = a n ( q , b / a ; q ) n ( a q , b ; q ) n .
17.7.13 ϕ 3 4 ( a , a q , b 2 q 2 n 2 , q 2 n b , b q , a 2 ; q 2 , q 2 ) = a n ( q , b / a ; q ) n ( 1 b q n 1 ) ( a , b ; q ) n ( 1 b q 2 n 1 ) .
9: 10.23 Sums
§10.23(i) Multiplication Theorem
10: 17.6 ϕ 1 2 Function
17.6.1 ϕ 1 2 ( a , b c ; q , c / ( a b ) ) = ( c / a , c / b ; q ) ( c , c / ( a b ) ; q ) , | c | < | a b | .
17.6.5 ϕ 1 2 ( a , b a q / b ; q , q / b ) = ( q ; q ) ( a q , a q 2 / b 2 ; q 2 ) ( q / b , a q / b ; q ) , | b | > | q | .
17.6.6 ϕ 1 2 ( a , b c ; q , z ) = ( b , a z ; q ) ( c , z ; q ) ϕ 1 2 ( c / b , z a z ; q , b ) , | z | < 1 , | b | < 1 .
17.6.7 ϕ 1 2 ( a , b c ; q , z ) = ( c / b , b z ; q ) ( c , z ; q ) ϕ 1 2 ( a b z / c , b b z ; q , c / b ) , | z | < 1 , | c | < | b | .