…
►For further monotonicity properties see Elbert (2001), Lorch (1990, 1993, 1995), Lorch and Muldoon (2008), Lorch and Szegő (1990, 1995), and Muldoon (1981).
For inequalities for zeros arising from monotonicity properties see Laforgia and Muldoon (1983).
…
…
►►►Figure 22.19.1: Jacobi’s amplitude function for and .
When , increases monotonically indicating that the motion of the pendulum is unbounded in , corresponding to free rotation about the fulcrum; compare Figure 22.16.1.
…
Magnify
…
R. W. Barnard, K. Pearce, and K. C. Richards (2000)A monotonicity property involving and comparisons of the classical approximations of elliptical arc length.
SIAM J. Math. Anal.32 (2), pp. 403–419.