monotonicity
(0.001 seconds)
1—10 of 26 matching pages
1: 10.37 Inequalities; Monotonicity
§10.37 Inequalities; Monotonicity
…2: 10.14 Inequalities; Monotonicity
§10.14 Inequalities; Monotonicity
… ►For monotonicity properties of and see Lorch (1992). … ►For further monotonicity properties see Landau (1999, 2000), and Muldoon and Spigler (1984).3: 35.9 Applications
…
►For other statistical applications of functions of matrix argument see Perlman and Olkin (1980), Groeneboom and Truax (2000), Bhaumik and Sarkar (2002), Richards (2004) (monotonicity of power functions of multivariate statistical test criteria), Bingham et al. (1992) (Procrustes analysis), and Phillips (1986) (exact distributions of statistical test criteria).
…
4: Bibliography L
…
►
Monotonicity properties of zeros of generalized Airy functions.
Z. Angew. Math. Phys. 39 (2), pp. 267–271.
►
Monotonicity results and inequalities for the gamma and error functions.
J. Comput. Appl. Math. 23 (1), pp. 25–33.
…
►
Bessel functions: Monotonicity and bounds.
J. London Math. Soc. (2) 61 (1), pp. 197–215.
…
►
Monotonicity and convexity properties of zeros of Bessel functions.
SIAM J. Math. Anal. 8 (1), pp. 171–178.
…
►
Higher monotonicity properties of certain Sturm-Liouville functions. III.
Canad. J. Math. 22, pp. 1238–1265.
…
5: 1.4 Calculus of One Variable
…
►
§1.4(i) Monotonicity
… ►Each of the preceding four cases is classified as monotonic; sometimes strictly monotonic is used for the strictly increasing or strictly decreasing cases. … ►For monotonic and integrable on , there exists , such that …6: 8.13 Zeros
…
►The negative zero decreases monotonically in the interval , and satisfies
…
7: 9.8 Modulus and Phase
…
►
§9.8(iii) Monotonicity
…8: 8.3 Graphics
…
►Some monotonicity properties of and in the four quadrants of the ()-plane in Figure 8.3.6 are given in Erdélyi et al. (1953b, §9.6).
…
9: 23.20 Mathematical Applications
…
►The boundary of the rectangle , with vertices , , , , is mapped strictly monotonically by onto the real line with , , , , .
…
►The two pairs of edges and of are each mapped strictly monotonically by onto the real line, with , , ; similarly for the other pair of edges.
…