About the Project

modulus

AdvancedHelp

(0.001 seconds)

11—20 of 532 matching pages

11: 22.5 Special Values
For example, at z = K + i K , sn ( z , k ) = 1 / k , d sn ( z , k ) / d z = 0 . (The modulus k is suppressed throughout the table.) … For example, sn ( 1 2 K , k ) = ( 1 + k ) 1 / 2 . …
§22.5(ii) Limiting Values of k
For values of K , K when k 2 = 1 2 (lemniscatic case) see §23.5(iii), and for k 2 = e i π / 3 (equianharmonic case) see §23.5(v). …
12: 36.3 Visualizations of Canonical Integrals
§36.3(i) Canonical Integrals: Modulus
Figure 36.3.1: Modulus of Pearcey integral | Ψ 2 ( x , y ) | .
Figure 36.3.2: Modulus of swallowtail canonical integral function | Ψ 3 ( x , y , 3 ) | .
Figure 36.3.3: Modulus of swallowtail canonical integral function | Ψ 3 ( x , y , 0 ) | .
Figure 36.3.12: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 3 ) | . …
13: 4.16 Elementary Properties
Table 4.16.3: Trigonometric functions: interrelations. …
sin θ = a cos θ = a tan θ = a csc θ = a sec θ = a cot θ = a
sin θ a ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a 1 a 1 ( a 2 1 ) 1 / 2 ( 1 + a 2 ) 1 / 2
cos θ ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a 1 ( a 2 1 ) 1 / 2 a 1 a ( 1 + a 2 ) 1 / 2
tan θ a ( 1 a 2 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a ( a 2 1 ) 1 / 2 ( a 2 1 ) 1 / 2 a 1
csc θ a 1 ( 1 a 2 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 a a ( a 2 1 ) 1 / 2 ( 1 + a 2 ) 1 / 2
sec θ ( 1 a 2 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 a ( a 2 1 ) 1 / 2 a a 1 ( 1 + a 2 ) 1 / 2
14: 10.18 Modulus and Phase Functions
§10.18 Modulus and Phase Functions
§10.18(i) Definitions
where M ν ( x ) ( > 0 ) , N ν ( x ) ( > 0 ) , θ ν ( x ) , and ϕ ν ( x ) are continuous real functions of ν and x , with the branches of θ ν ( x ) and ϕ ν ( x ) fixed by …
§10.18(ii) Basic Properties
§10.18(iii) Asymptotic Expansions for Large Argument
15: 10.55 Continued Fractions
For continued fractions for 𝗃 n + 1 ( z ) / 𝗃 n ( z ) and 𝗂 n + 1 ( 1 ) ( z ) / 𝗂 n ( 1 ) ( z ) see Cuyt et al. (2008, pp. 350, 353, 362, 363, 367–369).
16: 12.6 Continued Fraction
For a continued-fraction expansion of the ratio U ( a , x ) / U ( a 1 , x ) see Cuyt et al. (2008, pp. 340–341).
17: 9.6 Relations to Other Functions
9.6.3 Ai ( z ) = π 1 ( z / 3 ) K ± 2 / 3 ( ζ ) = ( z / 3 ) ( I 2 / 3 ( ζ ) I 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) e π i / 6 H 2 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 ( z / 3 ) e 5 π i / 6 H 2 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 ( z / 3 ) e π i / 6 H 2 / 3 ( 2 ) ( ζ e π i / 2 ) = 1 2 ( z / 3 ) e 5 π i / 6 H 2 / 3 ( 2 ) ( ζ e π i / 2 ) ,
9.6.6 Ai ( z ) = ( z / 3 ) ( J 1 / 3 ( ζ ) + J 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) ,
9.6.7 Ai ( z ) = ( z / 3 ) ( J 2 / 3 ( ζ ) J 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 6 H 2 / 3 ( 1 ) ( ζ ) + e π i / 6 H 2 / 3 ( 2 ) ( ζ ) ) = 1 2 ( z / 3 ) ( e 5 π i / 6 H 2 / 3 ( 1 ) ( ζ ) + e 5 π i / 6 H 2 / 3 ( 2 ) ( ζ ) ) ,
9.6.8 Bi ( z ) = z / 3 ( J 1 / 3 ( ζ ) J 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e 2 π i / 3 H 1 / 3 ( 1 ) ( ζ ) + e 2 π i / 3 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e π i / 3 H 1 / 3 ( 1 ) ( ζ ) + e π i / 3 H 1 / 3 ( 2 ) ( ζ ) ) ,
9.6.9 Bi ( z ) = ( z / 3 ) ( J 2 / 3 ( ζ ) + J 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ ) + e π i / 3 H 2 / 3 ( 2 ) ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ ) + e π i / 3 H 2 / 3 ( 2 ) ( ζ ) ) .
18: 9.3 Graphics
§9.3(i) Real Variable
See accompanying text
Figure 9.3.1: Ai ( x ) , Bi ( x ) , M ( x ) . For M ( x ) see §9.8(i). Magnify
See accompanying text
Figure 9.3.2: Ai ( x ) , Bi ( x ) , N ( x ) . For N ( x ) see §9.8(i). Magnify
19: 11.8 Analogs to Kelvin Functions
§11.8 Analogs to Kelvin Functions
For properties of Struve functions of argument x e ± 3 π i / 4 see McLachlan and Meyers (1936).
20: 4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
π / 6 1 2 1 2 3 1 3 3 2 2 3 3 3
π / 4 1 2 2 1 2 2 1 2 2 1
π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
π / 2 1 0 1 0
2 π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3