About the Project

modulus%20and%20phase

AdvancedHelp

(0.003 seconds)

1—10 of 16 matching pages

1: 7.23 Tables
  • Zhang and Jin (1996, pp. 638, 640–641) includes the real and imaginary parts of erf z , x [ 0 , 5 ] , y = 0.5 ( .5 ) 3 , 7D and 8D, respectively; the real and imaginary parts of x e ± i t 2 d t , ( 1 / π ) e i ( x 2 + ( π / 4 ) ) x e ± i t 2 d t , x = 0 ( .5 ) 20 ( 1 ) 25 , 8D, together with the corresponding modulus and phase to 8D and 6D (degrees), respectively.

  • 2: 10.75 Tables
  • The main tables in Abramowitz and Stegun (1964, Chapter 9) give J 0 ( x ) to 15D, J 1 ( x ) , J 2 ( x ) , Y 0 ( x ) , Y 1 ( x ) to 10D, Y 2 ( x ) to 8D, x = 0 ( .1 ) 17.5 ; Y n ( x ) ( 2 / π ) J n ( x ) ln x , n = 0 , 1 , x = 0 ( .1 ) 2 , 8D; J n ( x ) , Y n ( x ) , n = 3 ( 1 ) 9 , x = 0 ( .2 ) 20 , 5D or 5S; J n ( x ) , Y n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100 , x = 1 , 2 , 5 , 10 , 50 , 100 , 10S; modulus and phase functions x M n ( x ) , θ n ( x ) x , n = 0 , 1 , 2 , 1 / x = 0 ( .01 ) 0.1 , 8D.

  • 3: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • 4: 22.3 Graphics
    In the graphics shown in this subsection height corresponds to the absolute value of the function and color to the phase. …
    §22.3(iv) Complex k
    In Figures 22.3.24 and 22.3.25, height corresponds to the absolute value of the function and color to the phase. …
    See accompanying text
    Figure 22.3.24: sn ( x + i y , k ) for 4 x 4 , 0 y 8 , k = 1 + 1 2 i . … Magnify 3D Help
    See accompanying text
    Figure 22.3.25: sn ( 5 , k ) as a function of complex k 2 , 1 ( k 2 ) 3.5 , 1 ( k 2 ) 1 . … Magnify 3D Help
    5: 5.11 Asymptotic Expansions
    As z in the sector | ph z | π δ , … Wrench (1968) gives exact values of g k up to g 20 . … If z is complex, then the remainder terms are bounded in magnitude by sec 2 n ( 1 2 ph z ) for (5.11.1), and sec 2 n + 1 ( 1 2 ph z ) for (5.11.2), times the first neglected terms. … For this result and a similar bound for the sector 1 2 π ph z π see Boyd (1994). … If z in the sector | ph z | π δ , then …
    6: 9.7 Asymptotic Expansions
    Numerical values of χ ( n ) are given in Table 9.7.1 for n = 1 ( 1 ) 20 to 2D. …
    9.7.6 Ai ( z ) z 1 / 4 e ζ 2 π k = 0 ( 1 ) k v k ζ k , | ph z | π δ ,
    where ξ = 2 3 x 3 / 2 . …
    7: 36.5 Stokes Sets
    The Stokes set consists of the rays ph x = ± 2 π / 3 in the complex x -plane. …
    36.5.4 80 x 5 40 x 4 55 x 3 + 5 x 2 + 20 x 1 = 0 ,
    36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
    For z < 0 , there are two solutions u , provided that | Y | > ( 2 5 ) 1 / 2 . … This consists of three separate cusp-edged sheets connected to the cusp-edged sheets of the bifurcation set, and related by rotation about the z -axis by 2 π / 3 . …
    8: 18.39 Applications in the Physical Sciences
    Then ω = 2 π ν = k / m is the circular frequency of oscillation (with ν the ordinary frequency), independent of the amplitude of the oscillations. …With the normalization factor ( c h n ) 1 / 2 the ψ n are orthonormal in L 2 ( , d x ) . … (where the minus sign is often omitted, as it arises as an arbitrary phase when taking the square root of the real, positive, norm of the wave function), allowing equation (18.39.37) to be rewritten in terms of the associated Coulomb–Laguerre polynomials 𝐋 n + l 2 l + 1 ( ρ n ) . … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. … For applications and an extension of the Szegő–Szász inequality (18.14.20) for Legendre polynomials ( α = β = 0 ) to obtain global bounds on the variation of the phase of an elastic scattering amplitude, see Cornille and Martin (1972, 1974). …
    9: 9.9 Zeros
    They lie in the sectors 1 3 π < ph z < 1 2 π and 1 2 π < ph z < 1 3 π , and are denoted by β k , β k , respectively, in the former sector, and by β k ¯ , β k ¯ , in the conjugate sector, again arranged in ascending order of absolute value (modulus) for k = 1 , 2 , . See §9.3(ii) for visualizations. …
    §9.9(ii) Relation to Modulus and Phase
    Table 9.9.3: Complex zeros of Bi .
    e π i / 3 β k Bi ( β k )
    k modulus phase modulus phase
    Table 9.9.4: Complex zeros of Bi .
    e π i / 3 β k Bi ( β k )
    k modulus phase modulus phase
    10: 11.6 Asymptotic Expansions
    11.6.1 𝐊 ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | π δ ,
    §11.6(iii) Large | ν | , Fixed z / ν
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,