modulus and phase functions
(0.003 seconds)
1—10 of 134 matching pages
1: 9.8 Modulus and Phase
…
►
§9.8(i) Definitions
… ►§9.8(ii) Identities
… ►§9.8(iii) Monotonicity
… ►§9.8(iv) Asymptotic Expansions
… ►2: 10.68 Modulus and Phase Functions
§10.68 Modulus and Phase Functions
►§10.68(i) Definitions
… ►§10.68(ii) Basic Properties
… ►§10.68(iii) Asymptotic Expansions for Large Argument
… ►Additional properties of the modulus and phase functions are given in Young and Kirk (1964, pp. xi–xv). …3: 10.18 Modulus and Phase Functions
§10.18 Modulus and Phase Functions
►§10.18(i) Definitions
… ►§10.18(ii) Basic Properties
… ►§10.18(iii) Asymptotic Expansions for Large Argument
… ►In (10.18.17) and (10.18.18) the remainder after terms does not exceed the th term in absolute value and is of the same sign, provided that for (10.18.17) and for (10.18.18).4: 12.19 Tables
…
►
•
►
•
…
Miller (1955) includes , , and reduced derivatives for , , 8D or 8S. Modulus and phase functions, and also other auxiliary functions are tabulated.
Fox (1960) includes modulus and phase functions for and , and several auxiliary functions for , , 8S.
5: 10.3 Graphics
…
►
§10.3(i) Real Order and Variable
►For the modulus and phase functions , , , and see §10.18. … ► …6: 33.13 Complex Variable and Parameters
…
►
33.13.1
…
7: 36.3 Visualizations of Canonical Integrals
…
►
§36.3(i) Canonical Integrals: Modulus
… ►§36.3(ii) Canonical Integrals: Phase
►In Figure 36.3.13(a) points of confluence of phase contours are zeros of ; similarly for other contour plots in this subsection. … ► … ►8: 32.11 Asymptotic Approximations for Real Variables
…
►
32.11.24
…
9: 9.11 Products
…
►
9.11.19
…