About the Project

modulus

AdvancedHelp

(0.003 seconds)

1—10 of 532 matching pages

1: 22.2 Definitions
§22.2 Definitions
The nome q is given in terms of the modulus k by …
22.2.11 p q ( z , k ) = θ p ( z | τ ) / θ q ( z | τ ) ,
2: 22.17 Moduli Outside the Interval [0,1]
§22.17 Moduli Outside the Interval [0,1]
§22.17(i) Real or Purely Imaginary Moduli
22.17.2 sn ( z , 1 / k ) = k sn ( z / k , k ) ,
§22.17(ii) Complex Moduli
For proofs of these results and further information see Walker (2003).
3: 9.8 Modulus and Phase
§9.8 Modulus and Phase
§9.8(i) Definitions
§9.8(ii) Identities
§9.8(iii) Monotonicity
4: 4.30 Elementary Properties
Table 4.30.1: Hyperbolic functions: interrelations. …
sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
sinh θ a ( a 2 1 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 a 1 ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
cosh θ ( 1 + a 2 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 a 1 a ( a 2 1 ) 1 / 2
tanh θ a ( 1 + a 2 ) 1 / 2 a 1 ( a 2 1 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 ( 1 a 2 ) 1 / 2 a 1
csch θ a 1 ( a 2 1 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a a ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
sech θ ( 1 + a 2 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a a 1 ( a 2 1 ) 1 / 2
5: 10.62 Graphs
For the modulus functions M ( x ) and N ( x ) see §10.68(i) with ν = 0 . …
See accompanying text
Figure 10.62.3: e x / 2 ber x , e x / 2 bei x , e x / 2 M ( x ) , 0 x 8 . Magnify
See accompanying text
Figure 10.62.4: e x / 2 ker x , e x / 2 kei x , e x / 2 N ( x ) , 0 x 8 . Magnify
6: 17.10 Transformations of ψ r r Functions
17.10.1 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , d / a , c / b , d q / ( a b z ) ; q ) ( z , d , q / b , c d / ( a b z ) ; q ) ψ 2 2 ( a , a b z / d a z , c ; q , d a ) ,
17.10.3 ψ 8 8 ( q a 1 2 , q a 1 2 , c , d , e , f , a q n , q n a 1 2 , a 1 2 , a q / c , a q / d , a q / e , a q / f , q n + 1 , a q n + 1 ; q , a 2 q 2 n + 2 c d e f ) = ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n ( q / c , q / d , a q / e , a q / f ; q ) n ψ 4 4 ( e , f , a q n + 1 / ( c d ) , q n a q / c , a q / d , q n + 1 , e f / ( a q n ) ; q , q ) ,
17.10.4 ψ 2 2 ( e , f a q / c , a q / d ; q , a q e f ) = ( q / c , q / d , a q / e , a q / f ; q ) ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n = ( 1 a q 2 n ) ( c , d , e , f ; q ) n ( 1 a ) ( a q / c , a q / d , a q / e , a q / f ; q ) n ( q a 3 c d e f ) n q n 2 .
17.10.5 ( a q / b , a q / c , a q / d , a q / e , q / ( a b ) , q / ( a c ) , q / ( a d ) , q / ( a e ) ; q ) ( f a , g a , f / a , g / a , q a 2 , q / a 2 ; q ) ψ 8 8 ( q a , q a , b a , c a , d a , e a , f a , g a a , a , a q / b , a q / c , a q / d , a q / e , a q / f , a q / g ; q , q 2 b c d e f g ) = ( q , q / ( b f ) , q / ( c f ) , q / ( d f ) , q / ( e f ) , q f / b , q f / c , q f / d , q f / e ; q ) ( f a , q / ( f a ) , a q / f , f / a , g / f , f g , q f 2 ; q ) ϕ 7 8 ( f 2 , q f , q f , f b , f c , f d , f e , f g f , f , f q / b , f q / c , f q / d , f q / e , f q / g ; q , q 2 b c d e f g ) + idem ( f ; g ) .
17.10.6 ( a q / b , a q / c , a q / d , a q / e , a q / f , q / ( a b ) , q / ( a c ) , q / ( a d ) , q / ( a e ) , q / ( a f ) ; q ) ( a g , a h , a k , g / a , h / a , k / a , q a 2 , q / a 2 ; q ) ψ 10 10 ( q a , q a , b a , c a , d a , e a , f a , g a , h a , k a a , a , a q / b , a q / c , a q / d , a q / e , a q / f , a q / g , a q / h , a q / k ; q , q 2 b c d e f g h k ) = ( q , q / ( b g ) , q / ( c g ) , q / ( d g ) , q / ( e g ) , q / ( f g ) , q g / b , q g / c , q g / d , q g / e , q g / f ; q ) ( g h , g k , h / g , a g , q / ( a g ) , g / a , a q / g , q g 2 ; q ) ϕ 9 10 ( g 2 , q g , q g , g b , g c , g d , g e , g f , g h , g k g , g , q g / b , q g / c , q g / d , q g / e , q g / f , q g / h , q g / k ; q , q 2 b c d e f g h k ) + idem ( g ; h , k ) .
7: 17.8 Special Cases of ψ r r Functions
17.8.4 ψ 2 2 ( b , c ; a q / b , a q / c ; q , a q / ( b c ) ) = ( a q / ( b c ) ; q ) ( a q 2 / b 2 , a q 2 / c 2 , q 2 , a q , q / a ; q 2 ) ( a q / b , a q / c , q / b , q / c , a q / ( b c ) ; q ) ,
17.8.5 ψ 3 3 ( b , c , d q / b , q / c , q / d ; q , q b c d ) = ( q , q / ( b c ) , q / ( b d ) , q / ( c d ) ; q ) ( q / b , q / c , q / d , q / ( b c d ) ; q ) ,
17.8.6 ψ 4 4 ( q a 1 2 , b , c , d a 1 2 , a q / b , a q / c , a q / d ; q , q a 3 2 b c d ) = ( a q , a q / ( b c ) , a q / ( b d ) , a q / ( c d ) , q a 1 2 / b , q a 1 2 / c , q a 1 2 / d , q , q / a ; q ) ( a q / b , a q / c , a q / d , q / b , q / c , q / d , q a 1 2 , q a 1 2 , q a 3 2 / ( b c d ) ; q ) ,
17.8.7 ψ 6 6 ( q a 1 2 , q a 1 2 , b , c , d , e a 1 2 , a 1 2 , a q / b , a q / c , a q / d , a q / e ; q , q a 2 b c d e ) = ( a q , a q / ( b c ) , a q / ( b d ) , a q / ( b e ) , a q / ( c d ) , a q / ( c e ) , a q / ( d e ) , q , q / a ; q ) ( a q / b , a q / c , a q / d , a q / e , q / b , q / c , q / d , q / e , q a 2 / ( b c d e ) ; q ) .
17.8.8 ψ 2 2 ( b 2 , b 2 / c q , c q ; q 2 , c q 2 / b 2 ) = 1 2 ( q 2 , q b 2 , q / b 2 , c q / b 2 ; q 2 ) ( c q , c q 2 / b 2 , q 2 / b 2 , c / b 2 ; q 2 ) ( ( c q / b ; q ) ( b q ; q ) + ( c q / b ; q ) ( b q ; q ) ) , | c q 2 | < | b 2 | .
8: 17.9 Further Transformations of ϕ r r + 1 Functions
17.9.2 ϕ 1 2 ( q n , b c ; q , z ) = ( c / b ; q ) n ( c ; q ) n b n ϕ 1 3 ( q n , b , q / z b q 1 n / c ; q , z / c ) ,
17.9.12 ϕ 2 3 ( a , b , c d , e ; q , d e a b c ) = ( e / b , e / c , c q / a , q / d ; q ) ( e , c q / d , q / a , e / ( b c ) ; q ) ϕ 2 3 ( c , d / a , c q / e c q / a , b c q / e ; q , b q d ) ( q / d , e q / d , b , c , d / a , d e / ( b c q ) , b c q 2 / ( d e ) ; q ) ( d / q , e , b q / d , c q / d , q / a , e / ( b c ) , b c q / e ; q ) ϕ 2 3 ( a q / d , b q / d , c q / d q 2 / d , e q / d ; q , d e a b c ) ,
17.9.13 ϕ 2 3 ( a , b , c d , e ; q , d e a b c ) = ( e / b , e / c ; q ) ( e , e / ( b c ) ; q ) ϕ 2 3 ( d / a , b , c d , b c q / e ; q , q ) + ( d / a , b , c , d e / ( b c ) ; q ) ( d , e , b c / e , d e / ( a b c ) ; q ) ϕ 2 3 ( e / b , e / c , d e / ( a b c ) d e / ( b c ) , e q / ( b c ) ; q , q ) .
17.9.14 ϕ 3 4 ( q n , a , b , c d , e , f ; q , q ) = ( e / a , f / a ; q ) n ( e , f ; q ) n a n ϕ 3 4 ( q n , a , d / b , d / c d , a q 1 n / e , a q 1 n / f ; q , q ) = ( a , e f / ( a b ) , e f / ( a c ) ; q ) n ( e , f , e f / ( a b c ) ; q ) n ϕ 3 4 ( q n , e / a , f / a , e f / ( a b c ) e f / ( a b ) , e f / ( a c ) , q 1 n / a ; q , q ) .
17.9.16 ϕ 7 8 ( a , q a 1 2 , q a 1 2 , b , c , d , e , f a 1 2 , a 1 2 , a q / b , a q / c , a q / d , a q / e , a q / f ; q , a 2 q 2 b c d e f ) = ( a q , a q / ( d e ) , a q / ( d f ) , a q / ( e f ) ; q ) ( a q / d , a q / e , a q / f , a q / ( d e f ) ; q ) ϕ 3 4 ( a q / ( b c ) , d , e , f a q / b , a q / c , d e f / a ; q , q ) + ( a q , a q / ( b c ) , d , e , f , a 2 q 2 / ( b d e f ) , a 2 q 2 / ( c d e f ) ; q ) ( a q / b , a q / c , a q / d , a q / e , a q / f , a 2 q 2 / ( b c d e f ) , d e f / ( a q ) ; q ) ϕ 3 4 ( a q / ( d e ) , a q / ( d f ) , a q / ( e f ) , a 2 q 2 / ( b c d e f ) a 2 q 2 / ( b d e f ) , a 2 q 2 / ( c d e f ) , a q 2 / ( d e f ) ; q , q ) .
9: 22.7 Landen Transformations
22.7.2 sn ( z , k ) = ( 1 + k 1 ) sn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.4 dn ( z , k ) = dn 2 ( z / ( 1 + k 1 ) , k 1 ) ( 1 k 1 ) 1 + k 1 dn 2 ( z / ( 1 + k 1 ) , k 1 ) .
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
22.7.8 dn ( z , k ) = ( 1 k 2 ) ( dn 2 ( z / ( 1 + k 2 ) , k 2 ) + k 2 ) k 2 2 dn ( z / ( 1 + k 2 ) , k 2 ) .
10: 10.68 Modulus and Phase Functions
§10.68 Modulus and Phase Functions
§10.68(i) Definitions
§10.68(ii) Basic Properties
§10.68(iii) Asymptotic Expansions for Large Argument
Additional properties of the modulus and phase functions are given in Young and Kirk (1964, pp. xi–xv). …