About the Project

metric coefficients

AdvancedHelp

(0.002 seconds)

1—10 of 241 matching pages

1: 30.13 Wave Equation in Prolate Spheroidal Coordinates
β–Ί
§30.13(ii) Metric Coefficients
β–Ί
30.13.3 h ξ 2 = ( x ξ ) 2 + ( y ξ ) 2 + ( z ξ ) 2 = c 2 ⁒ ( ξ 2 η 2 ) ξ 2 1 ,
β–Ί β–Ί β–ΊIn most applications the solution w has to be a single-valued function of ( x , y , z ) , which requires ΞΌ = m (a nonnegative integer) and …
2: 30.14 Wave Equation in Oblate Spheroidal Coordinates
β–Ί
§30.14(ii) Metric Coefficients
β–Ί
30.14.3 h ξ 2 = c 2 ⁒ ( ξ 2 + η 2 ) 1 + ξ 2 ,
β–Ί
30.14.4 h η 2 = c 2 ⁒ ( ξ 2 + η 2 ) 1 η 2 ,
β–Ί β–Ί
30.14.8 w 1 ⁑ ( ξ ) = a 1 ⁒ S n m ⁒ ( 1 ) ⁑ ( i ⁒ ξ , γ ) + b 1 ⁒ S n m ⁒ ( 2 ) ⁑ ( i ⁒ ξ , γ ) .
3: Bibliography K
β–Ί
  • T. A. Kaeding (1995) Pascal program for generating tables of SU ⁒ ( 3 ) Clebsch-Gordan coefficients. Comput. Phys. Comm. 85 (1), pp. 82–88.
  • β–Ί
  • P. L. Kapitsa (1951a) Heat conduction and diffusion in a fluid medium with a periodic flow. I. Determination of the wave transfer coefficient in a tube, slot, and canal. Akad. Nauk SSSR. Ε½urnal Eksper. Teoret. Fiz. 21, pp. 964–978.
  • β–Ί
  • R. P. Kerr (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11 (5), pp. 237–238.
  • β–Ί
  • T. H. Koornwinder (1981) Clebsch-Gordan coefficients for SU ⁒ ( 2 ) and Hahn polynomials. Nieuw Arch. Wisk. (3) 29 (2), pp. 140–155.
  • 4: 26.3 Lattice Paths: Binomial Coefficients
    §26.3 Lattice Paths: Binomial Coefficients
    β–Ί
    §26.3(i) Definitions
    β–Ί
    §26.3(ii) Generating Functions
    β–Ί
    §26.3(iii) Recurrence Relations
    β–Ί
    §26.3(iv) Identities
    5: 26.21 Tables
    §26.21 Tables
    β–ΊAbramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients ( m n ) for m up to 50 and n up to 25; extends Table 26.4.1 to n = 10 ; tabulates Stirling numbers of the first and second kinds, s ⁑ ( n , k ) and S ⁑ ( n , k ) , for n up to 25 and k up to n ; tabulates partitions p ⁑ ( n ) and partitions into distinct parts p ⁑ ( π’Ÿ , n ) for n up to 500. … β–ΊGoldberg et al. (1976) contains tables of binomial coefficients to n = 100 and Stirling numbers to n = 40 .
    6: 28.14 Fourier Series
    β–ΊThe coefficients satisfy β–Ί
    28.14.4 q ⁒ c 2 ⁒ m + 2 ( a ( ν + 2 ⁒ m ) 2 ) ⁒ c 2 ⁒ m + q ⁒ c 2 ⁒ m 2 = 0 , a = λ ν ⁑ ( q ) , c 2 ⁒ m = c 2 ⁒ m ν ⁑ ( q ) ,
    β–Ί
    28.14.5 m = ( c 2 ⁒ m ν ⁑ ( q ) ) 2 = 1 ;
    β–Ί
    28.14.7 c 2 ⁒ m ν ⁑ ( q ) = c 2 ⁒ m ν ⁑ ( q ) ,
    β–Ί
    28.14.8 c 2 ⁒ m ν ⁑ ( q ) = ( 1 ) m ⁒ c 2 ⁒ m ν ⁑ ( q ) .
    7: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    §26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    β–Ί
    §26.4(i) Definitions
    β–Ί M 1 is the multinominal coefficient (26.4.2): … β–Ί
    §26.4(ii) Generating Function
    β–Ί
    §26.4(iii) Recurrence Relation
    8: 29.20 Methods of Computation
    β–ΊSubsequently, formulas typified by (29.6.4) can be applied to compute the coefficients of the Fourier expansions of the corresponding Lamé functions by backward recursion followed by application of formulas typified by (29.6.5) and (29.6.6) to achieve normalization; compare §3.6. … β–ΊA third method is to approximate eigenvalues and Fourier coefficients of Lamé functions by eigenvalues and eigenvectors of finite matrices using the methods of §§3.2(vi) and 3.8(iv). …The approximations converge geometrically (§3.8(i)) to the eigenvalues and coefficients of Lamé functions as n . … β–Ί
    §29.20(ii) Lamé Polynomials
    β–ΊThe corresponding eigenvectors yield the coefficients in the finite Fourier series for Lamé polynomials. …
    9: 15.7 Continued Fractions
    β–Ί
    15.7.1 𝐅 ⁑ ( a , b ; c ; z ) 𝐅 ⁑ ( a , b + 1 ; c + 1 ; z ) = t 0 u 1 ⁒ z t 1 u 2 ⁒ z t 2 u 3 ⁒ z t 3 β‹― ,
    β–Ίwhere … β–Ί β–Ίwhere …
    10: 28.4 Fourier Series
    β–Ί
    §28.4(ii) Recurrence Relations
    β–Ί
    §28.4(iii) Normalization
    β–Ί
    §28.4(v) Change of Sign of q
    β–Ί
    §28.4(vi) Behavior for Small q
    β–Ί
    §28.4(vii) Asymptotic Forms for Large m