About the Project

method%20of%20steepest%20descents

AdvancedHelp

(0.003 seconds)

1—10 of 224 matching pages

1: 20 Theta Functions
Chapter 20 Theta Functions
2: 27.15 Chinese Remainder Theorem
Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. … Details of a machine program describing the method together with typical numerical results can be found in Newman (1967). …
3: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. C. Boyd (1993) Error bounds for the method of steepest descents. Proc. Roy. Soc. London Ser. A 440, pp. 493–518.
  • W. G. C. Boyd (1994) Gamma function asymptotics by an extension of the method of steepest descents. Proc. Roy. Soc. London Ser. A 447, pp. 609–630.
  • W. G. C. Boyd (1995) Approximations for the late coefficients in asymptotic expansions arising in the method of steepest descents. Methods Appl. Anal. 2 (4), pp. 475–489.
  • 4: 3.8 Nonlinear Equations
    Bisection Method
    Secant Method
    Eigenvalue Methods
    Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    5: Bibliography P
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • R. Piessens and M. Branders (1985) A survey of numerical methods for the computation of Bessel function integrals. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 249–265.
  • M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.
  • 6: 5.21 Methods of Computation
    §5.21 Methods of Computation
    Another approach is to apply numerical quadrature (§3.5) to the integral (5.9.2), using paths of steepest descent for the contour. …
    7: Bibliography C
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • C. Chester, B. Friedman, and F. Ursell (1957) An extension of the method of steepest descents. Proc. Cambridge Philos. Soc. 53, pp. 599–611.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • R. Courant and D. Hilbert (1953) Methods of mathematical physics. Vol. I. Interscience Publishers, Inc., New York, N.Y..
  • 8: 9.17 Methods of Computation
    §9.17 Methods of Computation
    The former reference includes a parallelized version of the method. … In these cases boundary-value methods need to be used instead; see §3.7(iii). … In the first method the integration path for the contour integral (9.5.4) is deformed to coincide with paths of steepest descent2.4(iv)). …For the second method see also Gautschi (2002a). …
    9: Publications
  • A. Youssef (2007) Methods of Relevance Ranking and Hit-content Generation in Math Search, Proceedings of Mathematical Knowledge Management (MKM2007), RISC, Hagenberg, Austria, June 27–30, 2007. PDF
  • B. Saunders and Q. Wang (2010) Tensor Product B-Spline Mesh Generation for Accurate Surface Visualizations in the NIST Digital Library of Mathematical Functions, in Mathematical Methods for Curves and Surfaces, Proceedings of the 2008 International Conference on Mathematical Methods for Curves and Surfaces (MMCS 2008), Lecture Notes in Computer Science, Vol. 5862, (M. Dæhlen, M. Floater., T. Lyche, J. L. Merrien, K. Mørken, L. L. Schumaker, eds), Springer, Berlin, Heidelberg (2010) pp. 385–393. PDF
  • B. I. Schneider, B. R. Miller and B. V. Saunders (2018) NIST’s Digital Library of Mathematial Functions, Physics Today 71, 2, 48 (2018), pp. 48–53. PDF
  • 10: 8 Incomplete Gamma and Related
    Functions