About the Project

matrix notation

AdvancedHelp

(0.002 seconds)

1—10 of 30 matching pages

1: 26.15 Permutations: Matrix Notation
§26.15 Permutations: Matrix Notation
2: 35.1 Special Notation
β–Ί β–Ίβ–Ί
a , b complex variables.
β–ΊRelated notations for the Bessel functions are π’₯ Ξ½ + 1 2 ⁒ ( m + 1 ) ⁑ ( 𝐓 ) = A Ξ½ ⁑ ( 𝐓 ) / A Ξ½ ⁑ ( 𝟎 ) (Faraut and Korányi (1994, pp. 320–329)), K m ⁑ ( 0 , , 0 , Ξ½ | 𝐒 , 𝐓 ) = | 𝐓 | Ξ½ ⁒ B Ξ½ ⁑ ( 𝐒 ⁒ 𝐓 ) (Terras (1988, pp. 49–64)), and 𝒦 Ξ½ ⁑ ( 𝐓 ) = | 𝐓 | Ξ½ ⁒ B Ξ½ ⁑ ( 𝐒 ⁒ 𝐓 ) (Faraut and Korányi (1994, pp. 357–358)).
3: 21.1 Special Notation
§21.1 Special Notation
β–Ί(For other notation see Notation for the Special Functions.) β–Ί β–Ίβ–Ίβ–Ίβ–Ί
g , h positive integers.
𝛀 g × g complex, symmetric matrix with ⁑ 𝛀 strictly positive definite, i.e., a Riemann matrix.
𝟎 g g × g zero matrix.
β–ΊUppercase boldface letters are g × g real or complex matrices. …
4: 1.2 Elementary Algebra
β–ΊThe full index form of an m × n matrix 𝐀 is …
5: 32.8 Rational Solutions
β–Ί
32.8.10 Ο„ n ⁑ ( z ) = 𝒲 ⁑ { p 1 ⁑ ( z ) , p 3 ⁑ ( z ) , , p 2 ⁒ n 1 ⁑ ( z ) } .
6: 32.10 Special Function Solutions
β–Ί
32.10.9 Ο„ n ⁑ ( z ) = 𝒲 ⁑ { Ο• ⁑ ( z ) , Ο• ⁑ ( z ) , , Ο• ( n 1 ) ⁑ ( z ) } ,
7: Bibliography J
β–Ί
  • A. T. James (1964) Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35 (2), pp. 475–501.
  • β–Ί
  • J. K. M. Jansen (1977) Simple-periodic and Non-periodic Lamé Functions. Mathematical Centre Tracts, No. 72, Mathematisch Centrum, Amsterdam.
  • β–Ί
  • H. Jeffreys and B. S. Jeffreys (1956) Methods of Mathematical Physics. 3rd edition, Cambridge University Press, Cambridge.
  • β–Ί
  • M. Jimbo, T. Miwa, Y. Môri, and M. Sato (1980) Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 (1), pp. 80–158.
  • β–Ί
  • C. Jordan (1939) Calculus of Finite Differences. Hungarian Agent Eggenberger Book-Shop, Budapest.
  • 8: 1.3 Determinants, Linear Operators, and Spectral Expansions
    β–Ί
    1.3.5 det ( 𝐀 T ) = det ( 𝐀 ) ,
    β–Ί
    1.3.6 det ( 𝐀 1 ) = 1 det ( 𝐀 ) ,
    9: Errata
    β–Ί
  • Equations (1.3.5), (1.3.6), (1.3.7)
    1.3.5 det ( 𝐀 T ) = det ( 𝐀 )
    1.3.6 det ( 𝐀 1 ) = 1 det ( 𝐀 )
    1.3.7 det ( 𝐀 ⁒ 𝐁 ) = det ( 𝐀 ) ⁒ det ( 𝐁 )

    Previously we used the notation [ a j ⁒ k ] , [ b j ⁒ k ] , for 𝐀 , 𝐁 respectively.

  • β–Ί
  • Equations (32.8.10), (32.10.9)
    32.8.10 Ο„ n ⁒ ( z ) = 𝒲 ⁑ { p 1 ⁒ ( z ) , p 3 ⁒ ( z ) , , p 2 ⁒ n 1 ⁒ ( z ) }
    32.10.9 Ο„ n ⁒ ( z ) = 𝒲 ⁑ { Ο• ⁒ ( z ) , Ο• ⁒ ( z ) , , Ο• ( n 1 ) ⁒ ( z ) }

    The right-hand side of these equation, which was originally written as a matrix determinant, was rewritten using the Wronskian determinant notation. Also, in each preceding sentence, the word ‘determinant’ was replaced with ‘Wronskian determinant’.

  • 10: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
    β–ΊLet Ξ± = n , n = 0 , 1 , 2 , , and q n , m , m = 0 , 1 , , n , be the eigenvalues of the tridiagonal matrixβ–Ί
    31.5.2 𝐻𝑝 n , m ⁑ ( a , q n , m ; n , Ξ² , Ξ³ , Ξ΄ ; z ) = H ⁒ β„“ ⁑ ( a , q n , m ; n , Ξ² , Ξ³ , Ξ΄ ; z )