About the Project

logarithmic%20integral

AdvancedHelp

(0.004 seconds)

1—10 of 26 matching pages

1: 6.16 Mathematical Applications
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 6.16.2: The logarithmic integral li ⁑ ( x ) , together with vertical bars indicating the value of Ο€ ⁑ ( x ) for x = 10 , 20 , , 1000 . Magnify
2: 6.19 Tables
β–Ί
  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z ⁒ e z ⁒ E 1 ⁑ ( z ) , x = 19 ⁒ ( 1 ) ⁒ 20 , y = 0 ⁒ ( 1 ) ⁒ 20 , 6D; e z ⁒ E 1 ⁑ ( z ) , x = 4 ⁒ ( .5 ) 2 , y = 0 ⁒ ( .2 ) ⁒ 1 , 6D; E 1 ⁑ ( z ) + ln ⁑ z , x = 2 ⁒ ( .5 ) ⁒ 2.5 , y = 0 ⁒ ( .2 ) ⁒ 1 , 6D.

  • 3: 6.20 Approximations
    β–Ί
  • Hastings (1955) gives several minimax polynomial and rational approximations for E 1 ⁑ ( x ) + ln ⁑ x , x ⁒ e x ⁒ E 1 ⁑ ( x ) , and the auxiliary functions f ⁑ ( x ) and g ⁑ ( x ) . These are included in Abramowitz and Stegun (1964, Ch. 5).

  • β–Ί
  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ⁑ ( x ) , with accuracies up to 20S.

  • β–Ί
  • Cody and Thacher (1969) provides minimax rational approximations for Ei ⁑ ( x ) , with accuracies up to 20S.

  • β–Ί
  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • β–Ί
  • Clenshaw (1962) gives Chebyshev coefficients for E 1 ⁑ ( x ) ln ⁑ | x | for 4 x 4 and e x ⁒ E 1 ⁑ ( x ) for x 4 (20D).

  • 4: 7.8 Inequalities
    β–Ί
    7.8.1 𝖬 ⁑ ( x ) = x e t 2 ⁒ d t e x 2 = e x 2 ⁒ x e t 2 ⁒ d t .
    β–Ί
    7.8.6 0 x e a ⁒ t 2 ⁒ d t < 1 3 ⁒ a ⁒ x ⁒ ( 2 ⁒ e a ⁒ x 2 + a ⁒ x 2 2 ) , a , x > 0 .
    β–Ί
    7.8.7 sinh ⁑ x 2 x < e x 2 ⁒ F ⁑ ( x ) = 0 x e t 2 ⁒ d t < e x 2 1 x , x > 0 .
    β–ΊThe function F ⁑ ( x ) / 1 e 2 ⁒ x 2 is strictly decreasing for x > 0 . For these and similar results for Dawson’s integral F ⁑ ( x ) see Janssen (2021). …
    5: Bibliography M
    β–Ί
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • β–Ί
  • W. Magnus and S. Winkler (1966) Hill’s Equation. Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
  • β–Ί
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • β–Ί
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 6: 25.12 Polylogarithms
    β–ΊThe right-hand side is called Clausen’s integral. … β–Ί
    Integral Representation
    β–Ί
    §25.12(iii) Fermi–Dirac and Bose–Einstein Integrals
    β–ΊThe Fermi–Dirac and Bose–Einstein integrals are defined by … β–ΊIn terms of polylogarithms …
    7: 25.20 Approximations
    β–Ί
  • Cody et al. (1971) gives rational approximations for ΞΆ ⁑ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • β–Ί
  • Luke (1969b, p. 306) gives coefficients in Chebyshev-series expansions that cover ΞΆ ⁑ ( s ) for 0 s 1 (15D), ΞΆ ⁑ ( s + 1 ) for 0 s 1 (20D), and ln ⁑ ΞΎ ⁑ ( 1 2 + i ⁒ x ) 25.4) for 1 x 1 (20D). For errata see Piessens and Branders (1972).

  • β–Ί
  • Morris (1979) gives rational approximations for Li 2 ⁑ ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • β–Ί
  • Antia (1993) gives minimax rational approximations for Ξ“ ⁑ ( s + 1 ) ⁒ F s ⁑ ( x ) , where F s ⁑ ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 8: 25.5 Integral Representations
    §25.5 Integral Representations
    β–Ί
    25.5.1 ΞΆ ⁑ ( s ) = 1 Ξ“ ⁑ ( s ) ⁒ 0 x s 1 e x 1 ⁒ d x , ⁑ s > 1 .
    β–Ί
    25.5.2 ΞΆ ⁑ ( s ) = 1 Ξ“ ⁑ ( s + 1 ) ⁒ 0 e x ⁒ x s ( e x 1 ) 2 ⁒ d x , ⁑ s > 1 .
    β–Ί
    25.5.15 ΞΆ ⁑ ( s ) = 1 s 1 + sin ⁑ ( Ο€ ⁒ s ) Ο€ ⁒ 0 ( ln ⁑ ( 1 + x ) ψ ⁑ ( 1 + x ) ) ⁒ x s ⁒ d x ,
    β–Ί
    §25.5(iii) Contour Integrals
    9: 20.10 Integrals
    §20.10 Integrals
    β–Ί
    20.10.1 0 x s 1 ⁒ ΞΈ 2 ⁑ ( 0 | i ⁒ x 2 ) ⁒ d x = 2 s ⁒ ( 1 2 s ) ⁒ Ο€ s / 2 ⁒ Ξ“ ⁑ ( 1 2 ⁒ s ) ⁒ ΞΆ ⁑ ( s ) , ⁑ s > 1 ,
    β–Ί
    20.10.4 0 e s ⁒ t ⁒ ΞΈ 1 ⁑ ( Ξ² ⁒ Ο€ 2 ⁒ β„“ | i ⁒ Ο€ ⁒ t β„“ 2 ) ⁒ d t = 0 e s ⁒ t ⁒ ΞΈ 2 ⁑ ( ( 1 + Ξ² ) ⁒ Ο€ 2 ⁒ β„“ | i ⁒ Ο€ ⁒ t β„“ 2 ) ⁒ d t = β„“ s ⁒ sinh ⁑ ( Ξ² ⁒ s ) ⁒ sech ⁑ ( β„“ ⁒ s ) ,
    β–Ί
    20.10.5 0 e s ⁒ t ⁒ ΞΈ 3 ⁑ ( ( 1 + Ξ² ) ⁒ Ο€ 2 ⁒ β„“ | i ⁒ Ο€ ⁒ t β„“ 2 ) ⁒ d t = 0 e s ⁒ t ⁒ ΞΈ 4 ⁑ ( Ξ² ⁒ Ο€ 2 ⁒ β„“ | i ⁒ Ο€ ⁒ t β„“ 2 ) ⁒ d t = β„“ s ⁒ cosh ⁑ ( Ξ² ⁒ s ) ⁒ csch ⁑ ( β„“ ⁒ s ) .
    β–ΊFor further integrals of theta functions see Erdélyi et al. (1954a, pp. 61–62 and 339), Prudnikov et al. (1990, pp. 356–358), Prudnikov et al. (1992a, §3.41), and Gradshteyn and Ryzhik (2000, pp. 627–628).
    10: 11.14 Tables
    β–Ί
  • Zhang and Jin (1996) tabulates 𝐇 n ⁑ ( x ) and 𝐋 n ⁑ ( x ) for n = 4 ⁒ ( 1 ) ⁒ 3 and x = 0 ⁒ ( 1 ) ⁒ 20 to 8D or 7S.

  • β–Ί
    §11.14(iii) Integrals
    β–Ί
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0 x ( I 0 ⁑ ( t ) 𝐋 0 ⁑ ( t ) ) ⁒ d t and ( 2 / Ο€ ) ⁒ x t 1 ⁒ 𝐇 0 ⁑ ( t ) ⁒ d t for x = 0 ⁒ ( .1 ) ⁒ 5 to 5D or 7D; 0 x ( 𝐇 0 ⁑ ( t ) Y 0 ⁑ ( t ) ) ⁒ d t ( 2 / Ο€ ) ⁒ ln ⁑ x , 0 x ( I 0 ⁑ ( t ) 𝐋 0 ⁑ ( t ) ) ⁒ d t ( 2 / Ο€ ) ⁒ ln ⁑ x , and x t 1 ⁒ ( 𝐇 0 ⁑ ( t ) Y 0 ⁑ ( t ) ) ⁒ d t for x 1 = 0 ⁒ ( .01 ) ⁒ 0.2 to 6D.

  • β–Ί
  • Agrest et al. (1982) tabulates 0 x 𝐇 0 ⁑ ( t ) ⁒ d t and e x ⁒ 0 x 𝐋 0 ⁑ ( t ) ⁒ d t for x = 0 ⁒ ( .001 ) ⁒ 5 ⁒ ( .005 ) ⁒ 15 ⁒ ( .01 ) ⁒ 100 to 11D.