About the Project

logarithmic weight function

AdvancedHelp

(0.004 seconds)

1—10 of 23 matching pages

1: 3.5 Quadrature
Gauss Formula for a Logarithmic Weight Function
Table 3.5.14: Nodes and weights for the 5-point Gauss formula for the logarithmic weight function.
x k w k
Table 3.5.15: Nodes and weights for the 10-point Gauss formula for the logarithmic weight function.
x k w k
Table 3.5.16: Nodes and weights for the 15-point Gauss formula for the logarithmic weight function.
x k w k
Table 3.5.17: Nodes and weights for the 20-point Gauss formula for the logarithmic weight function.
x k w k
2: 18.33 Polynomials Orthogonal on the Unit Circle
18.33.31 j = 0 ( 1 | α j | 2 ) = exp ( 1 2 π i | z | = 1 ln ( w ( z ) ) d z z ) .
18.33.32 j = 0 | α j | 2 < 1 2 π i | z | = 1 ln ( ( w ( z ) ) d z z > .
3: 18.19 Hahn Class: Definitions
18.19.7 w ( λ ) ( z ; ϕ ) = Γ ( λ + i z ) Γ ( λ i z ) e ( 2 ϕ π ) z ,
18.19.8 w ( x ) = w ( λ ) ( x ; ϕ ) = | Γ ( λ + i x ) | 2 e ( 2 ϕ π ) x , λ > 0 , 0 < ϕ < π ,
4: 18.35 Pollaczek Polynomials
18.35.6 w ( λ ) ( cos θ ; a , b ) = π 1 e ( 2 θ π ) τ a , b ( θ ) ( 2 sin θ ) 2 λ 1 | Γ ( λ + i τ a , b ( θ ) ) | 2 , 0 < θ < π .
18.35.6_1 ln ( w ( λ ) ( cos θ ; a , b ) ) = { 2 π ( a + b ) θ 1 + ( 2 λ 1 ) ln ( a + b ) + λ ln 4 + 2 ( a + b ) + O ( θ ) , θ 0 + , 2 π ( b a ) ( π θ ) 1 + ( 2 λ 1 ) ln ( a b ) + λ ln 4 + 2 ( a b ) + O ( π θ ) , θ π ,
18.35.6_6 w ( λ ) ( cos θ ; a , b , c ) = e ( 2 θ π ) τ a , b ( θ ) ( 2 sin θ ) 2 λ 1 | Γ ( c + λ + i τ a , b ( θ ) ) | 2 π | F ( 1 λ + i τ a , b ( θ ) , c c + λ + i τ a , b ( θ ) ; e 2 i θ ) | 2 ,
5: 18.2 General Orthogonal Polynomials
18.2.39 1 1 | ln ( w ( x ) ) | 1 x 2 d x < .
6: 18.30 Associated OP’s
18.30.18 w ( λ ) ( x , ϕ , c ) = e ( 2 ϕ π ) x ( 2 sin ϕ ) 2 λ | Γ ( c + λ + i x ) | 2 2 π | F ( 1 λ + i x , c ; c + λ + i x ; e 2 i ϕ ) | 2 .
7: 18.36 Miscellaneous Polynomials
18.36.10 w ( x ) = e x 2 ( 4 x 2 + 2 ) 2 , x ( , ) .
8: 18.39 Applications in the Physical Sciences
18.39.50 w CP ( x ) = ( l + 1 + 2 Z s ) π Γ ( 2 l + 2 ) e ( 2 θ ( x ) π ) τ ( x ) ( 4 ( 1 x 2 ) ) l + 1 2 | Γ ( l + 1 + i τ ( x ) ) | 2 , θ ( x ) = arccos ( x ) , τ ( x ) = 2 Z s 1 x 1 + x .
9: 18.5 Explicit Representations
§18.5(i) Trigonometric Functions
Chebyshev
§18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
Laguerre
Hermite
10: 18.34 Bessel Polynomials
§18.34(i) Definitions and Recurrence Relation
Hence the full system of polynomials y n ( x ; a ) cannot be orthogonal on the line with respect to a positive weight function, but this is possible for a finite system of such polynomials, the Romanovski–Bessel polynomials, if a < 1 : …Explicit (but complicated) weight functions w ( x ) taking both positive and negative values have been found such that (18.2.26) holds with d μ ( x ) = w ( x ) d x ; see Durán (1993), Evans et al. (1993), and Maroni (1995). Orthogonality of the full system on the unit circle can be given with a much simpler weight function: … With functions