About the Project

logarithmic forms

AdvancedHelp

(0.003 seconds)

1—10 of 134 matching pages

1: 4.37 Inverse Hyperbolic Functions
§4.37(iv) Logarithmic Forms
For the corresponding results for arccsch z , arcsech z , and arccoth z , use (4.37.7)–(4.37.9); compare §4.23(iv). …
2: 4.45 Methods of Computation
The inverses arcsinh , arccosh , and arctanh can be computed from the logarithmic forms given in §4.37(iv), with real arguments. … The trigonometric functions may be computed from the definitions (4.14.1)–(4.14.7), and their inverses from the logarithmic forms in §4.23(iv), followed by (4.23.7)–(4.23.9). …
3: 4.23 Inverse Trigonometric Functions
§4.23(iv) Logarithmic Forms
Care needs to be taken on the cuts, for example, if 0 < x < then 1 / ( x + i 0 ) = ( 1 / x ) i 0 . …
4: 4.38 Inverse Hyperbolic Functions: Further Properties
4.38.2 arcsinh z = ln ( 2 z ) + 1 2 1 2 z 2 1 3 2 4 1 4 z 4 + 1 3 5 2 4 6 1 6 z 6 , z > 0 , | z | > 1 .
4.38.3 arccosh z = ln ( 2 z ) 1 2 1 2 z 2 1 3 2 4 1 4 z 4 1 3 5 2 4 6 1 6 z 6 , | z | > 1 .
5: 27.11 Asymptotic Formulas: Partial Sums
27.11.4 n x σ 1 ( n ) = π 2 12 x 2 + O ( x ln x ) .
27.11.6 n x ϕ ( n ) = 3 π 2 x 2 + O ( x ln x ) .
6: 4.3 Graphics
See accompanying text
Figure 4.3.1: ln x and e x . … Magnify
§4.3(ii) Complex Arguments: Conformal Maps
Figure 4.3.2 illustrates the conformal mapping of the strip π < z < π onto the whole w -plane cut along the negative real axis, where w = e z and z = ln w (principal value). …
See accompanying text
Figure 4.3.2: Conformal mapping of exponential and logarithm. … Magnify
See accompanying text
Figure 4.3.3: ln ( x + i y ) (principal value). … Magnify 3D Help
7: 8.9 Continued Fractions
8.9.1 Γ ( a + 1 ) e z γ ( a , z ) = 1 1 z a + 1 + z a + 2 ( a + 1 ) z a + 3 + 2 z a + 4 ( a + 2 ) z a + 5 + 3 z a + 6 , a 1 , 2 , ,
8: 6.7 Integral Representations
6.7.1 0 e a t t + b d t = 0 e i a t t + i b d t = e a b E 1 ( a b ) , a > 0 , b > 0 ,
6.7.3 x e i t a 2 + t 2 d t = i 2 a ( e a E 1 ( a i x ) e a E 1 ( a i x ) ) , a > 0 , x > 0 ,
6.7.4 x t e i t a 2 + t 2 d t = 1 2 ( e a E 1 ( a i x ) + e a E 1 ( a i x ) ) , a > 0 , x > 0 .
6.7.5 x e t a 2 + t 2 d t = 1 2 a i ( e i a E 1 ( x + i a ) e i a E 1 ( x i a ) ) , a > 0 , x ,
6.7.6 x t e t a 2 + t 2 d t = 1 2 ( e i a E 1 ( x + i a ) + e i a E 1 ( x i a ) ) , a > 0 , x .
9: 3.9 Acceleration of Convergence
3.9.5 ln 2 = 1 1 2 + 1 3 1 4 + = 1 1 2 1 + 1 2 2 2 + 1 3 2 3 + ,
§3.9(v) Levin’s and Weniger’s Transformations
We give a special form of Levin’s transformation in which the sequence s = { s n } of partial sums s n = j = 0 n a j is transformed into: …Sequences that are accelerated by Levin’s transformation include logarithmically convergent sequences, i. …
10: 6.2 Definitions and Interrelations
6.2.2 E 1 ( z ) = e z 0 e t t + z d t , | ph z | < π .
6.2.7 Ei ( ± x ) = Ein ( x ) + ln x + γ .
6.2.13 Ci ( z ) = Cin ( z ) + ln z + γ .