About the Project

logarithm function

AdvancedHelp

(0.016 seconds)

11—20 of 399 matching pages

11: 6.15 Sums
6.15.2 n = 1 si ( π n ) n = 1 2 π ( ln π 1 ) ,
6.15.3 n = 1 ( 1 ) n Ci ( 2 π n ) = 1 ln 2 1 2 γ ,
6.15.4 n = 1 ( 1 ) n si ( 2 π n ) n = π ( 3 2 ln 2 1 ) .
12: 4.6 Power Series
§4.6(i) Logarithms
4.6.1 ln ( 1 + z ) = z 1 2 z 2 + 1 3 z 3 , | z | 1 , z 1 ,
4.6.2 ln z = ( z 1 z ) + 1 2 ( z 1 z ) 2 + 1 3 ( z 1 z ) 3 + , z 1 2 ,
4.6.3 ln z = ( z 1 ) 1 2 ( z 1 ) 2 + 1 3 ( z 1 ) 3 , | z 1 | 1 , z 0 ,
4.6.5 ln ( z + 1 z 1 ) = 2 ( 1 z + 1 3 z 3 + 1 5 z 5 + ) , | z | 1 , z ± 1 ,
13: 4.7 Derivatives and Differential Equations
§4.7(i) Logarithms
4.7.1 d d z ln z = 1 z ,
4.7.2 d d z Ln z = 1 z ,
For a nonvanishing analytic function f ( z ) , the general solution of the differential equation …
4.7.6 w ( z ) = Ln ( f ( z ) ) +  constant .
14: 4.12 Generalized Logarithms and Exponentials
A generalized exponential function ϕ ( x ) satisfies the equations …It, too, is strictly increasing when 0 x 1 , and …
4.12.6 ϕ ( x ) = ln ( x + 1 ) , 1 < x < 0 ,
4.12.9 ψ ( x ) = + ln ln  times x , x > 1 ,
For C generalized logarithms, see Walker (1991). …
15: 4.5 Inequalities
§4.5(i) Logarithms
4.5.2 x < ln ( 1 x ) < x 1 x , x < 1 , x 0 ,
4.5.4 ln x x 1 , x > 0 ,
4.5.5 ln x a ( x 1 / a 1 ) , a , x > 0 ,
For more inequalities involving the logarithm function see Mitrinović (1964, pp. 75–77), Mitrinović (1970, pp. 272–276), and Bullen (1998, pp. 159–160). …
16: 4.4 Special Values and Limits
§4.4(i) Logarithms
4.4.1 ln 1 = 0 ,
4.4.2 ln ( 1 ± i 0 ) = ± π i ,
§4.4(iii) Limits
4.4.14 lim x 0 x a ln x = 0 , a > 0 ,
17: 6.6 Power Series
6.6.1 Ei ( x ) = γ + ln x + n = 1 x n n ! n , x > 0 .
6.6.2 E 1 ( z ) = γ ln z n = 1 ( 1 ) n z n n ! n .
where ψ denotes the logarithmic derivative of the gamma function5.2(i)). …
6.6.6 Ci ( z ) = γ + ln z + n = 1 ( 1 ) n z 2 n ( 2 n ) ! ( 2 n ) .
18: 5.17 Barnes’ G -Function (Double Gamma Function)
5.17.4 Ln G ( z + 1 ) = 1 2 z ln ( 2 π ) 1 2 z ( z + 1 ) + z Ln Γ ( z + 1 ) 0 z Ln Γ ( t + 1 ) d t .
5.17.5 Ln G ( z + 1 ) 1 4 z 2 + z Ln Γ ( z + 1 ) ( 1 2 z ( z + 1 ) + 1 12 ) ln z ln A + k = 1 B 2 k + 2 2 k ( 2 k + 1 ) ( 2 k + 2 ) z 2 k .
5.17.7 C = lim n ( k = 1 n k ln k ( 1 2 n 2 + 1 2 n + 1 12 ) ln n + 1 4 n 2 ) = γ + ln ( 2 π ) 12 ζ ( 2 ) 2 π 2 = 1 12 ζ ( 1 ) ,
19: 27.12 Asymptotic Formulas: Primes
27.12.1 lim n p n n ln n = 1 ,
27.12.2 p n > n ln n , n = 1 , 2 , .
27.12.5 | π ( x ) li ( x ) | = O ( x exp ( c ( ln x ) 1 / 2 ) ) , x .
27.12.6 | π ( x ) li ( x ) | = O ( x exp ( d ( ln x ) 3 / 5 ( ln ln x ) 1 / 5 ) ) .
27.12.8 li ( x ) ϕ ( m ) + O ( x exp ( λ ( α ) ( ln x ) 1 / 2 ) ) , m ( ln x ) α , α > 0 ,
20: 5.5 Functional Relations
5.5.8 ψ ( 2 z ) = 1 2 ( ψ ( z ) + ψ ( z + 1 2 ) ) + ln 2 ,
5.5.9 ψ ( n z ) = 1 n k = 0 n 1 ψ ( z + k n ) + ln n .
§5.5(iv) Bohr–Mollerup Theorem
If a positive function f ( x ) on ( 0 , ) satisfies f ( x + 1 ) = x f ( x ) , f ( 1 ) = 1 , and ln f ( x ) is convex (see §1.4(viii)), then f ( x ) = Γ ( x ) .