About the Project

local

AdvancedHelp

(0.001 seconds)

11—20 of 199 matching pages

11: 33.4 Recurrence Relations and Derivatives
12: 2.5 Mellin Transform Methods
§2.5(i) Introduction
Let f ( t ) be a locally integrable function on ( 0 , ) , that is, ρ T f ( t ) d t exists for all ρ and T satisfying 0 < ρ < T < . … Let f ( t ) and h ( t ) be locally integrable on ( 0 , ) and …Also, let …
2.5.24 h 2 ( t ) = h ( t ) h 1 ( t ) .
13: 31.16 Mathematical Applications
31.16.5 P j = ( ϵ j + n ) j ( β + j 1 ) ( γ + δ + j 2 ) ( γ + δ + 2 j 3 ) ( γ + δ + 2 j 2 ) ,
31.16.6 Q j = a j ( j + γ + δ 1 ) q + ( j n ) ( j + β ) ( j + γ ) ( j + γ + δ 1 ) ( 2 j + γ + δ ) ( 2 j + γ + δ 1 ) + ( j + n + γ + δ 1 ) j ( j + δ 1 ) ( j β + γ + δ 1 ) ( 2 j + γ + δ 1 ) ( 2 j + γ + δ 2 ) ,
31.16.7 R j = ( n j ) ( j + n + γ + δ ) ( j + γ ) ( j + δ ) ( γ + δ + 2 j ) ( γ + δ + 2 j + 1 ) .
14: 13.7 Asymptotic Expansions for Large Argument
13.7.5 | ε n ( z ) | , β 1 | ε n ( z ) | 2 α C n | ( a ) n ( a b + 1 ) n n ! z a + n | exp ( 2 α ρ C 1 | z | ) ,
13.7.6 C n = 1 , χ ( n ) , ( χ ( n ) + σ ν 2 n ) ν n ,
13.7.11 R n ( a , b , z ) = ( 1 ) n 2 π z a b Γ ( a ) Γ ( a b + 1 ) ( s = 0 m 1 ( 1 a ) s ( b a ) s s ! ( z ) s G n + 2 a b s ( z ) + ( 1 a ) m ( b a ) m R m , n ( a , b , z ) ) ,
13.7.12 G p ( z ) = e z 2 π Γ ( p ) Γ ( 1 p , z ) .
15: 31.10 Integral Equations and Representations
31.10.1 W ( z ) = C 𝒦 ( z , t ) w ( t ) ρ ( t ) d t
31.10.2 ρ ( t ) = t γ 1 ( t 1 ) δ 1 ( t a ) ϵ 1 ,
31.10.3 ( 𝒟 z 𝒟 t ) 𝒦 = 0 ,
Fuchs–Frobenius solutions W m ( z ) = κ ~ m z α H ( 1 / a , q m ; α , α γ + 1 , α β + 1 , δ ; 1 / z ) are represented in terms of Heun functions w m ( z ) = ( 0 , 1 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) by (31.10.1) with W ( z ) = W m ( z ) , w ( z ) = w m ( z ) , and with kernel chosen from …
31.10.14 ( ( t z ) 𝒟 s + ( z s ) 𝒟 t + ( s t ) 𝒟 z ) 𝒦 = 0 ,
16: 32.4 Isomonodromy Problems
32.4.4 𝐀 ( z , λ ) = ( 4 λ 4 + 2 w 2 + z ) [ 1 0 0 1 ] i ( 4 λ 2 w + 2 w 2 + z ) [ 0 i i 0 ] ( 2 λ w + 1 2 λ ) [ 0 1 1 0 ] ,
32.4.5 𝐁 ( z , λ ) = ( λ + w λ ) [ 1 0 0 1 ] i w λ [ 0 i i 0 ] .
32.4.6 𝐀 ( z , λ ) = i ( 4 λ 2 + 2 w 2 + z ) [ 1 0 0 1 ] 2 w [ 0 i i 0 ] + ( 4 λ w α λ ) [ 0 1 1 0 ] ,
32.4.7 𝐁 ( z , λ ) = [ i λ w w i λ ] .
32.4.8 𝐀 ( z , λ ) = [ 1 4 z 0 0 1 4 z ] + [ 1 2 θ u 0 u 1 1 2 θ ] 1 λ + [ v 0 1 4 z v 1 v 0 ( v 0 1 2 z ) / v 1 1 4 z v 0 ] 1 λ 2 ,
17: 3.7 Ordinary Differential Equations
3.7.1 d 2 w d z 2 + f ( z ) d w d z + g ( z ) w = h ( z ) ,
3.7.6 𝐀 ( τ , z ) = [ A 11 ( τ , z ) A 12 ( τ , z ) A 21 ( τ , z ) A 22 ( τ , z ) ] ,
3.7.7 𝐛 ( τ , z ) = [ b 1 ( τ , z ) b 2 ( τ , z ) ] ,
3.7.10 𝐀 P = [ 𝐀 ( τ 0 , z 0 ) 𝐈 𝟎 𝟎 𝟎 𝟎 𝐀 ( τ 1 , z 1 ) 𝐈 𝟎 𝟎 𝟎 𝟎 𝐀 ( τ P 2 , z P 2 ) 𝐈 𝟎 𝟎 𝟎 𝟎 𝐀 ( τ P 1 , z P 1 ) 𝐈 ]
3.7.12 𝐛 = [ b 1 ( τ 0 , z 0 ) , b 2 ( τ 0 , z 0 ) , b 1 ( τ 1 , z 1 ) , b 2 ( τ 1 , z 1 ) , , b 1 ( τ P 1 , z P 1 ) , b 2 ( τ P 1 , z P 1 ) ] T .
18: 3.8 Nonlinear Equations
If ζ is a simple zero, then the iteration converges locally and quadratically. … It converges locally and quadratically for both and . … The method converges locally and quadratically, except when the wanted quadratic factor is a multiple factor of q ( z ) . … The rule converges locally and is cubically convergent. …
19: 7.17 Inverse Error Functions
7.17.5 u = 2 / ln ( π x 2 ln ( 1 / x ) ) ,
7.17.6 v = ln ( ln ( 1 / x ) ) 2 + ln π .
20: 12.17 Physical Applications