About the Project

linearization%20formulas

AdvancedHelp

(0.002 seconds)

1—10 of 11 matching pages

1: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • S. Axler (2015) Linear algebra done right. Third edition, Undergraduate Texts in Mathematics, Springer, Cham.
  • 2: Bibliography K
  • A. A. Kapaev (2004) Quasi-linear Stokes phenomenon for the Painlevé first equation. J. Phys. A 37 (46), pp. 11149–11167.
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • J. J. Kovacic (1986) An algorithm for solving second order linear homogeneous differential equations. J. Symbolic Comput. 2 (1), pp. 3–43.
  • 3: Bibliography G
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • W. Gautschi (1997b) The Computation of Special Functions by Linear Difference Equations. In Advances in Difference Equations (Veszprém, 1995), S. Elaydi, I. Győri, and G. Ladas (Eds.), pp. 213–243.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • J. J. Gray (2000) Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd edition, Birkhäuser Boston Inc., Boston, MA.
  • E. P. Gross and S. Ziering (1958) Kinetic theory of linear shear flow. Phys. Fluids 1 (3), pp. 215–224.
  • 4: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • J. P. M. Flude (1998) The Edmonds asymptotic formulas for the 3 j and 6 j symbols. J. Math. Phys. 39 (7), pp. 3906–3915.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • R. Fuchs (1907) Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math. Ann. 63 (3), pp. 301–321.
  • 5: Bibliography W
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • W. Wasow (1985) Linear Turning Point Theory. Applied Mathematical Sciences No. 54, Springer-Verlag, New York.
  • G. B. Whitham (1974) Linear and Nonlinear Waves. John Wiley & Sons, New York.
  • R. Wong (2014) Asymptotics of linear recurrences. Anal. Appl. (Singap.) 12 (4), pp. 463–484.
  • 6: Bibliography S
  • D. Shanks (1955) Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34, pp. 1–42.
  • G. E. Shilov (2013) Introduction to the Theory of Linear Spaces. Martino, Mansfield Center, CT.
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • R. Spigler and M. Vianello (1992) Liouville-Green approximations for a class of linear oscillatory difference equations of the second order. J. Comput. Appl. Math. 41 (1-2), pp. 105–116.
  • R. Spigler (1984) The linear differential equation whose solutions are the products of solutions of two given differential equations. J. Math. Anal. Appl. 98 (1), pp. 130–147.
  • 7: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih, and X. Yin (1990) Fourier analysis and signal processing by use of the Möbius inversion formula. IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • E. Ya. Remez (1957) General Computation Methods of Chebyshev Approximation. The Problems with Linear Real Parameters. Publishing House of the Academy of Science of the Ukrainian SSR, Kiev.
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9 j -symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • 8: Bibliography N
  • D. Naylor (1984) On simplified asymptotic formulas for a class of Mathieu functions. SIAM J. Math. Anal. 15 (6), pp. 1205–1213.
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 9: Bibliography D
  • B. Davies (1973) Complex zeros of linear combinations of spherical Bessel functions and their derivatives. SIAM J. Math. Anal. 4 (1), pp. 128–133.
  • B. Deconinck and J. N. Kutz (2006) Computing spectra of linear operators using the Floquet-Fourier-Hill method. J. Comput. Phys. 219 (1), pp. 296–321.
  • A. M. Din (1981) A simple sum formula for Clebsch-Gordan coefficients. Lett. Math. Phys. 5 (3), pp. 207–211.
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.
  • 10: Bibliography B
  • A. W. Babister (1967) Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations. The Macmillan Co., New York.
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • W. Barrett (1981) Mathieu functions of general order: Connection formulae, base functions and asymptotic formulae. I–V. Philos. Trans. Roy. Soc. London Ser. A 301, pp. 75–162.
  • P. M. Batchelder (1967) An Introduction to Linear Difference Equations. Dover Publications Inc., New York.
  • C. Brezinski (1999) Error estimates for the solution of linear systems. SIAM J. Sci. Comput. 21 (2), pp. 764–781.