About the Project

limits%20of%20functions

AdvancedHelp

(0.004 seconds)

1—10 of 15 matching pages

1: 8.17 Incomplete Beta Functions
8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
2: 18.40 Methods of Computation
It is now necessary to take the limit ε 0 + of F ( x + i ε ) , and the imaginary part is the required Stieltjes–Perron inversion: …Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . Gautschi (2004, p. 119–120) has explored the ε 0 + limit via the Wynn ε -algorithm, (3.9.11) to accelerate convergence, finding four to eight digits of precision in w ( x ) , depending smoothly on x , for N 4000 , for an example involving first numerator Legendre OP’s. … H ( x ) being the Heaviside step-function, see (1.16.13). … The example chosen is inversion from the α n , β n for the weight function for the repulsive Coulomb–Pollaczek, RCP, polynomials of (18.39.50). …
3: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter η . Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • N. E. Nørlund (1955) Hypergeometric functions. Acta Math. 94, pp. 289–349.
  • 4: Bibliography D
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (1990a) Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21 (4), pp. 995–1018.
  • 5: 26.12 Plane Partitions
    Table 26.12.1: Plane partitions.
    n pp ( n ) n pp ( n ) n pp ( n )
    3 6 20 75278 37 903 79784
    §26.12(ii) Generating Functions
    §26.12(iv) Limiting Form
    26.12.26 pp ( n ) ( ζ ( 3 ) ) 7 / 36 2 11 / 36 ( 3 π ) 1 / 2 n 25 / 36 exp ( 3 ( ζ ( 3 ) ) 1 / 3 ( 1 2 n ) 2 / 3 + ζ ( 1 ) ) ,
    where ζ is the Riemann ζ -function25.2(i)). …
    6: Bibliography C
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n α ( x )  as the index α  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • P. L. Chebyshev (1851) Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée. Mem. Ac. Sc. St. Pétersbourg 6, pp. 141–157.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 7: 6.16 Mathematical Applications
    These limits are not approached uniformly, however. …Hence if x = π / ( 2 n ) and n , then the limiting value of S n ( x ) overshoots 1 4 π by approximately 18%. Similarly if x = π / n , then the limiting value of S n ( x ) undershoots 1 4 π by approximately 10%, and so on. … It occurs with Fourier-series expansions of all piecewise continuous functions. … …
    8: 26.5 Lattice Paths: Catalan Numbers
    Table 26.5.1: Catalan numbers.
    n C ( n ) n C ( n ) n C ( n )
    6 132 13 7 42900 20 65641 20420
    §26.5(ii) Generating Function
    §26.5(iv) Limiting Forms
    26.5.7 lim n C ( n + 1 ) C ( n ) = 4 .
    9: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • F. E. Relton (1965) Applied Bessel Functions. Dover Publications Inc., New York.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • 10: 26.3 Lattice Paths: Binomial Coefficients
    Table 26.3.1: Binomial coefficients ( m n ) .
    m n
    6 1 6 15 20 15 6 1
    Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
    m n
    3 1 4 10 20 35 56 84 120 165
    §26.3(ii) Generating Functions
    §26.3(v) Limiting Form